These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 23141766)
1. A rapid screening technique for estimating nanoparticle transport in porous media. Bouchard D; Zhang W; Chang X Water Res; 2013 Aug; 47(12):4086-94. PubMed ID: 23141766 [TBL] [Abstract][Full Text] [Related]
2. High mobility of SDBS-dispersed single-walled carbon nanotubes in saturated and unsaturated porous media. Tian Y; Gao B; Ziegler KJ J Hazard Mater; 2011 Feb; 186(2-3):1766-72. PubMed ID: 21236566 [TBL] [Abstract][Full Text] [Related]
3. Impact of porous media grain size on the transport of multi-walled carbon nanotubes. Mattison NT; O'Carroll DM; Kerry Rowe R; Petersen EJ Environ Sci Technol; 2011 Nov; 45(22):9765-75. PubMed ID: 21950836 [TBL] [Abstract][Full Text] [Related]
4. Effect of surface modification on single-walled carbon nanotube retention and transport in saturated and unsaturated porous media. Tian Y; Gao B; Morales VL; Wang Y; Wu L J Hazard Mater; 2012 Nov; 239-240():333-9. PubMed ID: 23009789 [TBL] [Abstract][Full Text] [Related]
5. Mobility of multiwalled carbon nanotubes in porous media. Liu X; O'Carroll DM; Petersen EJ; Huang Q; Anderson CL Environ Sci Technol; 2009 Nov; 43(21):8153-8. PubMed ID: 19924937 [TBL] [Abstract][Full Text] [Related]
6. Aggregation kinetics and transport of single-walled carbon nanotubes at low surfactant concentrations. Bouchard D; Zhang W; Powell T; Rattanaudompol US Environ Sci Technol; 2012 Apr; 46(8):4458-65. PubMed ID: 22443301 [TBL] [Abstract][Full Text] [Related]
7. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm. Tripathi S; Champagne D; Tufenkji N Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225 [TBL] [Abstract][Full Text] [Related]
8. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media. Su Y; Zhao YS; Li LL; Qin CY; Wu F; Geng NN; Lei JS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1639-52. PubMed ID: 25320851 [TBL] [Abstract][Full Text] [Related]
9. Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand. Mitzel MR; Sand S; Whalen JK; Tufenkji N Water Res; 2016 Apr; 92():113-20. PubMed ID: 26845456 [TBL] [Abstract][Full Text] [Related]
10. Fullerene nanoparticles exhibit greater retention in freshwater sediment than in model porous media. Zhang W; Isaacson CW; Rattanaudompol US; Powell TB; Bouchard D Water Res; 2012 Jun; 46(9):2992-3004. PubMed ID: 22445188 [TBL] [Abstract][Full Text] [Related]
11. Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating. Petosa AR; Brennan SJ; Rajput F; Tufenkji N Water Res; 2012 Mar; 46(4):1273-85. PubMed ID: 22236555 [TBL] [Abstract][Full Text] [Related]
12. Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns. Tian Y; Gao B; Wang Y; Morales VL; Carpena RM; Huang Q; Yang L J Hazard Mater; 2012 Apr; 213-214():265-72. PubMed ID: 22361629 [TBL] [Abstract][Full Text] [Related]
13. Effects of humic acid and electrolytes on photocatalytic reactivity and transport of carbon nanoparticle aggregates in water. Chae SR; Xiao Y; Lin S; Noeiaghaei T; Kim JO; Wiesner MR Water Res; 2012 Sep; 46(13):4053-62. PubMed ID: 22673338 [TBL] [Abstract][Full Text] [Related]
14. Transport and retention of TiO Hoggan JL; Sabatini DA; Kibbey TCG J Contam Hydrol; 2016 Nov; 194():30-35. PubMed ID: 27780094 [TBL] [Abstract][Full Text] [Related]
15. Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling. Zhang L; Hou L; Wang L; Kan AT; Chen W; Tomson MB Environ Sci Technol; 2012 Jul; 46(13):7230-8. PubMed ID: 22681192 [TBL] [Abstract][Full Text] [Related]
16. Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand. Quevedo IR; Tufenkji N Environ Sci Technol; 2012 Apr; 46(8):4449-57. PubMed ID: 22423631 [TBL] [Abstract][Full Text] [Related]
17. Efficient prevention of nanomaterials transport in the porous media by treatment with polyelectrolytes. Soenaryo T; Murata S; Zinchenko A Chemosphere; 2018 Nov; 210():567-576. PubMed ID: 30029149 [TBL] [Abstract][Full Text] [Related]
18. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone. Uyusur B; Darnault CJ; Snee PT; Kokën E; Jacobson AR; Wells RR J Contam Hydrol; 2010 Nov; 118(3-4):184-98. PubMed ID: 21056511 [TBL] [Abstract][Full Text] [Related]
19. Cotransport of titanium dioxide and fullerene nanoparticles in saturated porous media. Cai L; Tong M; Ma H; Kim H Environ Sci Technol; 2013 Jun; 47(11):5703-10. PubMed ID: 23662648 [TBL] [Abstract][Full Text] [Related]
20. Transport and retention of fullerene (nC60) nanoparticles in unsaturated porous media: effects of solution chemistry and solid phase coating. Chen L; Sabatini DA; Kibbey TC J Contam Hydrol; 2012 Sep; 138-139():104-12. PubMed ID: 22858671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]