BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23142181)

  • 1. A LED-based method for monitoring NAD(P)H and FAD fluorescence in cell cultures and brain slices.
    Rösner J; Liotta A; Schmitz D; Heinemann U; Kovács R
    J Neurosci Methods; 2013 Jan; 212(2):222-7. PubMed ID: 23142181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
    Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A
    Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimizing photodecomposition of flavin adenine dinucleotide fluorescence by the use of pulsed LEDs.
    Rösner J; Liotta A; Angamo EA; Spies C; Heinemann U; Kovács R
    J Microsc; 2016 Nov; 264(2):215-223. PubMed ID: 27368071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-photon FLIM of NAD(P)H and FAD in mesenchymal stem cells undergoing either osteogenic or chondrogenic differentiation.
    Meleshina AV; Dudenkova VV; Bystrova AS; Kuznetsova DS; Shirmanova MV; Zagaynova EV
    Stem Cell Res Ther; 2017 Jan; 8(1):15. PubMed ID: 28129796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiology-based kinetic modeling of neuronal energy metabolism unravels the molecular basis of NAD(P)H fluorescence transients.
    Berndt N; Kann O; Holzhütter HG
    J Cereb Blood Flow Metab; 2015 Sep; 35(9):1494-506. PubMed ID: 25899300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the amplitude of NAD(P)H fluorescence transients after synaptic stimulation.
    Brennan AM; Connor JA; Shuttleworth CW
    J Neurosci Res; 2007 Nov; 85(15):3233-43. PubMed ID: 17497703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultraviolet-induced autofluorescence characterization of normal and tumoral esophageal epithelium cells with quantitation of NAD(P)H.
    Villette S; Pigaglio-Deshayes S; Vever-Bizet C; Validire P; Bourg-Heckly G
    Photochem Photobiol Sci; 2006 May; 5(5):483-92. PubMed ID: 16685326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous Two-Photon Excited Fluorescence Imaging Characterizes Neuron and Astrocyte Metabolic Responses to Manganese Toxicity.
    Stuntz E; Gong Y; Sood D; Liaudanskaya V; Pouli D; Quinn KP; Alonzo C; Liu Z; Kaplan DL; Georgakoudi I
    Sci Rep; 2017 Apr; 7(1):1041. PubMed ID: 28432298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo monitoring the changes of interstitial pH and FAD/NADH ratio by fluorescence spectroscopy in healing skin wounds.
    Mokrý M; Gál P; Vidinský B; Kusnír J; Dubayová K; Mozes S; Sabo J
    Photochem Photobiol; 2006; 82(3):793-7. PubMed ID: 16435883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Fluorescence spectral characteristics of human blood and its endogenous fluorophores].
    Li BH; Zhang ZX; Xie SS; Chen R
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jul; 26(7):1310-3. PubMed ID: 17020047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
    Cao R; Wallrabe H; Periasamy A
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein.
    Huang S; Heikal AA; Webb WW
    Biophys J; 2002 May; 82(5):2811-25. PubMed ID: 11964266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increase in intracellular free/bound NAD[P]H as a cause of Cd-induced oxidative stress in the HepG(2) cells.
    Yang MS; Li D; Lin T; Zheng JJ; Zheng W; Qu JY
    Toxicology; 2008 May; 247(1):6-10. PubMed ID: 18336984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans.
    Kann O; Kovács R; Njunting M; Behrens CJ; Otáhal J; Lehmann TN; Gabriel S; Heinemann U
    Brain; 2005 Oct; 128(Pt 10):2396-407. PubMed ID: 15958506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence.
    Niesner R; Peker B; Schlüsche P; Gericke KH
    Chemphyschem; 2004 Aug; 5(8):1141-9. PubMed ID: 15446736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian tracking of nicotinamide cofactor levels in an immortalized suprachiasmatic nucleus cell line.
    Wise DD; Shear JB
    Neuroscience; 2004; 128(2):263-8. PubMed ID: 15350639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA-induced metabolic stress in reconstructed human skin.
    Ung TPL; Lim S; Solinas X; Mahou P; Chessel A; Marionnet C; Bornschlögl T; Beaurepaire E; Bernerd F; Pena AM; Stringari C
    Sci Rep; 2021 Nov; 11(1):22171. PubMed ID: 34772978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biphasic NAD(P)H fluorescence response of astrocytes to dopamine reflects the metabolic actions of oxidative phosphorylation and glycolysis.
    Requardt RP; Wilhelm F; Rillich J; Winkler U; Hirrlinger J
    J Neurochem; 2010 Oct; 115(2):483-92. PubMed ID: 20698931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The assessment of the energy metabolism in patients with chronic fatigue syndrome by serum fluorescence emission.
    Mikirova N; Casciari J; Hunninghake R
    Altern Ther Health Med; 2012; 18(1):36-40. PubMed ID: 22516851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Assessment of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H].
    Cheng Y; Ren M; Niu Y; Qiao J; Aneba S; Chorvat D; Chorvatova A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1191-200. PubMed ID: 20095467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.