These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 23142191)
1. Selective inhibitors of digestive enzymes from Aedes aegypti larvae identified by phage display. Soares TS; Soares Torquato RJ; Alves Lemos FJ; Tanaka AS Insect Biochem Mol Biol; 2013 Jan; 43(1):9-16. PubMed ID: 23142191 [TBL] [Abstract][Full Text] [Related]
2. Production of serine protease inhibitors by mutagenesis and their effects on the mortality of Aedes aegypti L. larvae. Soares TS; Torquato RJ; Gonzalez YG; Lemos FJ; Tanaka AS Parasit Vectors; 2015 Oct; 8():511. PubMed ID: 26444542 [TBL] [Abstract][Full Text] [Related]
3. Molecular characterization of genes encoding trypsin-like enzymes from Aedes aegypti larvae and identification of digestive enzymes. Soares TS; Watanabe RM; Lemos FJ; Tanaka AS Gene; 2011 Dec; 489(2):70-5. PubMed ID: 21914468 [TBL] [Abstract][Full Text] [Related]
4. A versatile inhibitor of digestive enzymes in Aedes aegypti larvae selected from a pacifastin (TiPI) phage display library. Manzato VM; Torquato RJS; Lemos FJA; Nishiduka E; Tashima AK; Tanaka AS Biochem Biophys Res Commun; 2022 Jan; 590():139-144. PubMed ID: 34974302 [TBL] [Abstract][Full Text] [Related]
5. A Trypsin Inhibitor from Clitoria fairchildiana Cotyledons is Active Against Digestive Enzymes of Aedes aegypti Larvae. de Oliveira LO; Fernandes KV; Pádua Dde S; Carvalho Ade O; Lemos FJ; Gomes VM; Oliveira AE; Ferreira AT; Perales J Protein Pept Lett; 2015; 22(10):893-902. PubMed ID: 26156641 [TBL] [Abstract][Full Text] [Related]
6. Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF. Borovsky D; Meola SM Arch Insect Biochem Physiol; 2004 Mar; 55(3):124-39. PubMed ID: 14981657 [TBL] [Abstract][Full Text] [Related]
7. Effects of proteinase inhibitor from Adenanthera pavonina seeds on short- and long term larval development of Aedes aegypti. Sasaki DY; Jacobowski AC; de Souza AP; Cardoso MH; Franco OL; Macedo ML Biochimie; 2015 May; 112():172-86. PubMed ID: 25796215 [TBL] [Abstract][Full Text] [Related]
8. The role of HiTI, a serine protease inhibitor from Haematobia irritans irritans (Diptera: Muscidae) in the control of fly and bacterial proteases. Azzolini SS; Sasaki SD; Campos IT; S Torquato RJ; Juliano MA; Tanaka AS Exp Parasitol; 2005 Sep; 111(1):30-6. PubMed ID: 16054488 [TBL] [Abstract][Full Text] [Related]
9. Trypsin inhibitor from Leucaena leucocephala seeds delays and disrupts the development of Aedes aegypti, a multiple-disease vector. Almeida Filho LC; de Souza TM; Tabosa PM; Soares NG; Rocha-Bezerra LC; Vasconcelos IM; Carvalho AF Pest Manag Sci; 2017 Jan; 73(1):181-187. PubMed ID: 27040615 [TBL] [Abstract][Full Text] [Related]
10. Functional characterization of a serine protease inhibitor modulated in the infection of the Aedes aegypti with dengue virus. Soares TS; Rodriguez Gonzalez BL; Torquato RJS; Lemos FJA; Costa-da-Silva AL; Capurro Guimarães ML; Tanaka AS Biochimie; 2018 Jan; 144():160-168. PubMed ID: 29133118 [TBL] [Abstract][Full Text] [Related]
11. Purification, characterization, and cloning of a serine proteinase inhibitor from the ectoparasite Haematobia irritans irritans (Diptera: Muscidae). Azzolini SS; Santos JM; Souza AF; Torquato RJ; Hirata IY; Andreotti R; Tanaka AS Exp Parasitol; 2004; 106(3-4):103-9. PubMed ID: 15172217 [TBL] [Abstract][Full Text] [Related]
12. Unique specificity of in vitro inhibition of mosquito midgut trypsin-like activity correlates with in vivo inhibition of malaria parasite infectivity. Shahabuddin M; Criscio M; Kaslow DC Exp Parasitol; 1995 Mar; 80(2):212-9. PubMed ID: 7534722 [TBL] [Abstract][Full Text] [Related]
13. A novel trypsin Kazal-type inhibitor from Aedes aegypti with thrombin coagulant inhibitory activity. Watanabe RM; Soares TS; Morais-Zani K; Tanaka-Azevedo AM; Maciel C; Capurro ML; Torquato RJ; Tanaka AS Biochimie; 2010 Aug; 92(8):933-9. PubMed ID: 20363282 [TBL] [Abstract][Full Text] [Related]
14. First insights into insecticidal activity against Aedes aegypti and partial biochemical characterization of a novel low molecular mass chymotrypsin-trypsin inhibitor purified from Lonchocarpus sericeus seeds. Almeida Filho LC; Tabosa PM; Hissa DC; Vasconcelos IM; Carvalho AF Pest Manag Sci; 2018 Jun; 74(6):1362-1373. PubMed ID: 29193604 [TBL] [Abstract][Full Text] [Related]
15. The effects of midgut serine proteases on dengue virus type 2 infectivity of Aedes aegypti. Brackney DE; Foy BD; Olson KE Am J Trop Med Hyg; 2008 Aug; 79(2):267-74. PubMed ID: 18689635 [TBL] [Abstract][Full Text] [Related]
16. Distribution and seasonality of vertically transmitted dengue viruses in Aedes mosquitoes in arid and semi-arid areas of Rajasthan, India. Angel B; Joshi V J Vector Borne Dis; 2008 Mar; 45(1):56-9. PubMed ID: 18399318 [TBL] [Abstract][Full Text] [Related]
17. Protein synthesized by dengue infected Aedes aegypti and Aedes albopictus. Rohani A; Yunus W; Zamree I; Lee HL Trop Biomed; 2005 Dec; 22(2):233-42. PubMed ID: 16883293 [TBL] [Abstract][Full Text] [Related]
18. TMOF-like factor controls the biosynthesis of serine proteases in the larval gut of Heliothis virescens. Nauen R; Sorge D; Sterner A; Borovsky D Arch Insect Biochem Physiol; 2001 Aug; 47(4):169-80. PubMed ID: 11462221 [TBL] [Abstract][Full Text] [Related]
19. A lethal ovitrap-based mass trapping scheme for dengue control in Australia: II. Impact on populations of the mosquito Aedes aegypti. Rapley LP; Johnson PH; Williams CR; Silcock RM; Larkman M; Long SA; Russell RC; Ritchie SA Med Vet Entomol; 2009 Dec; 23(4):303-16. PubMed ID: 19941596 [TBL] [Abstract][Full Text] [Related]
20. In vitro activation and enzyme kinetic analysis of recombinant midgut serine proteases from the Dengue vector mosquito Aedes aegypti. Rascón AA; Gearin J; Isoe J; Miesfeld RL BMC Biochem; 2011 Aug; 12():43. PubMed ID: 21827688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]