BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 23142227)

  • 1. Rewiring of Signaling Networks Modulating Thermotolerance in the Human Pathogen Cryptococcus neoformans.
    Yang DH; Jung KW; Bang S; Lee JW; Song MH; Floyd-Averette A; Festa RA; Ianiri G; Idnurm A; Thiele DJ; Heitman J; Bahn YS
    Genetics; 2017 Jan; 205(1):201-219. PubMed ID: 27866167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat shock factor 1-mediated thermotolerance prevents cell death and results in G2/M cell cycle arrest.
    Luft JC; Benjamin IJ; Mestril R; Dix DJ
    Cell Stress Chaperones; 2001 Oct; 6(4):326-36. PubMed ID: 11795469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative studies of thermotolerance: different modes of heat acclimation between tolerant and intolerant aquatic plants of the genus Potamogeton.
    Amano M; Iida S; Kosuge K
    Ann Bot; 2012 Feb; 109(2):443-52. PubMed ID: 22147547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell adaptation to aneuploidy by the environmental stress response dampens induction of the cytosolic unfolded-protein response.
    Kane AJ; Brennan CM; Xu AE; Solís EJ; Terhorst A; Denic V; Amon A
    Mol Biol Cell; 2021 Aug; 32(17):1557-1564. PubMed ID: 34191542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinvestigation of the effect of carbenoxolone on the induction of heat shock proteins.
    Kawashima D; Asai M; Katagiri K; Takeuchi R; Ohtsuka K
    Cell Stress Chaperones; 2009 Sep; 14(5):535-43. PubMed ID: 19333787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HSP101: a key component for the acquisition of thermotolerance in plants.
    Gurley WB
    Plant Cell; 2000 Apr; 12(4):457-60. PubMed ID: 10760235
    [No Abstract]   [Full Text] [Related]  

  • 7. Heat shock response in the thermophilic enteric yeast Arxiozyma telluris.
    Deegenaars ML; Watson K
    Appl Environ Microbiol; 1998 Aug; 64(8):3063-5. PubMed ID: 9687474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quercetin, an inhibitor of heat shock protein synthesis, inhibits the acquisition of thermotolerance in a human colon carcinoma cell line.
    Koishi M; Hosokawa N; Sato M; Nakai A; Hirayoshi K; Hiraoka M; Abe M; Nagata K
    Jpn J Cancer Res; 1992 Nov; 83(11):1216-22. PubMed ID: 1483935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperfluidization-coupled membrane microdomain reorganization is linked to activation of the heat shock response in a murine melanoma cell line.
    Nagy E; Balogi Z; Gombos I; Akerfelt M; Björkbom A; Balogh G; Török Z; Maslyanko A; Fiszer-Kierzkowska A; Lisowska K; Slotte PJ; Sistonen L; Horváth I; Vígh L
    Proc Natl Acad Sci U S A; 2007 May; 104(19):7945-50. PubMed ID: 17470815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upregulation of heat-shock proteins in larvae, but not adults, of the flesh fly during hot summer days.
    Harada E; Goto SG
    Cell Stress Chaperones; 2017 Nov; 22(6):823-831. PubMed ID: 28597340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closer limits to human tolerance of global heat.
    Sherwood SC; Ramsay EE
    Proc Natl Acad Sci U S A; 2023 Oct; 120(43):e2316003120. PubMed ID: 37831746
    [No Abstract]   [Full Text] [Related]  

  • 12. Modulation of Plasma Membrane Composition and Microdomain Organization Impairs Heat Shock Protein Expression in B16-F10 Mouse Melanoma Cells.
    Crul T; Csoboz B; Gombos I; Marton A; Peter M; Balogh G; Vizler C; Szente L; Vigh L
    Cells; 2020 Apr; 9(4):. PubMed ID: 32290618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell line-specific efficacy of thermoradiotherapy in human and canine cancer cells in vitro.
    Nytko KJ; Thumser-Henner P; Weyland MS; Scheidegger S; Rohrer Bley C
    PLoS One; 2019; 14(5):e0216744. PubMed ID: 31091255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atypical heat shock response and acquisition of thermotolerance in P388D1 cells.
    Oommen D; Giricz Z; Srinivas UK; Samali A
    Biochem Biophys Res Commun; 2013 Jan; 430(1):236-40. PubMed ID: 23142227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones.
    Zhang Y; Huang L; Zhang J; Moskophidis D; Mivechi NF
    J Cell Biochem; 2002; 86(2):376-93. PubMed ID: 12112007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cycloheximide or puromycin on induction of thermotolerance by sodium arsenite in Chinese hamster ovary cells: involvement of heat shock proteins.
    Lee YJ; Dewey WC
    J Cell Physiol; 1987 Jul; 132(1):41-8. PubMed ID: 3597553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NF-κB signaling pathway is inhibited by heat shock independently of active transcription factor HSF1 and increased levels of inducible heat shock proteins.
    Janus P; Pakuła-Cis M; Kalinowska-Herok M; Kashchak N; Szołtysek K; Pigłowski W; Widlak W; Kimmel M; Widlak P
    Genes Cells; 2011 Dec; 16(12):1168-75. PubMed ID: 22077664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermotolerance and the heat shock proteins.
    Burdon RH
    Symp Soc Exp Biol; 1987; 41():269-83. PubMed ID: 3332487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of HSF1 function in the heat stress response: implications in aging and disease.
    Anckar J; Sistonen L
    Annu Rev Biochem; 2011; 80():1089-115. PubMed ID: 21417720
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.