These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23142327)

  • 41. Electrocommunication signals in female brown ghost electric knifefish, Apteronotus leptorhynchus.
    Tallarovic SK; Zakon HH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Sep; 188(8):649-57. PubMed ID: 12355241
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Androgens alter electric organ discharge pulse duration despite stability in electric organ discharge frequency.
    Few WP; Zakon HH
    Horm Behav; 2001 Nov; 40(3):434-42. PubMed ID: 11673917
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stimulus frequency differentially affects chirping in two species of weakly electric fish: implications for the evolution of signal structure and function.
    Kolodziejski JA; Sanford SE; Smith GT
    J Exp Biol; 2007 Jul; 210(Pt 14):2501-9. PubMed ID: 17601954
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of 17alpha-methyltestosterone on sexually dimorphic characters in the weakly discharging electric fish, Brienomyrus niger (Günther, 1866) (Mormyridae): electric organ discharge, ventral body wall indentation, and anal-Fin ray bone expansion.
    Herfeld S; Moller P
    Horm Behav; 1998 Dec; 34(3):303-19. PubMed ID: 9878279
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of long-term social interaction on chirping behavior, steroid levels and neurogenesis in weakly electric fish.
    Dunlap KD; Chung M; Castellano JF
    J Exp Biol; 2013 Jul; 216(Pt 13):2434-41. PubMed ID: 23761468
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Communication in the weakly electric fish Sternopygus macrurus. I. The neural basis of conspecific EOD detection.
    Fleishman LJ
    J Comp Physiol A; 1992 Mar; 170(3):335-48. PubMed ID: 1593503
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of androgens and estrogen on the external morphology and electric organ discharge waveform of Gnathonemus petersii (Mormyridae, Teleostei).
    Landsman RE; Harding CF; Moller P; Thomas P
    Horm Behav; 1990 Dec; 24(4):532-53. PubMed ID: 2286367
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Androgen-induced changes in electrocommunicatory behavior are correlated with changes in substance P-like immunoreactivity in the brain of the electric fish Apteronotus leptorhynchus.
    Dulka JG; Maler L; Ellis W
    J Neurosci; 1995 Mar; 15(3 Pt 1):1879-90. PubMed ID: 7534341
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of a sexual dimorphism in a central pattern generator driving a rhythmic behavior: The role of glia-mediated potassium buffering in the pacemaker nucleus of the weakly electric fish Apteronotus leptorhynchus.
    Zupanc GKH
    Dev Neurobiol; 2020 Jan; 80(1-2):6-15. PubMed ID: 32090501
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE
    J Exp Biol; 2008 May; 211(Pt 10):1657-67. PubMed ID: 18456893
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electric interactions through chirping behavior in the weakly electric fish, Apteronotus leptorhynchus.
    Zupanc GK; Sîrbulescu RF; Nichols A; Ilies I
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Feb; 192(2):159-73. PubMed ID: 16247622
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Androgen modulates the kinetics of the delayed rectifying K+ current in the electric organ of a weakly electric fish.
    McAnelly ML; Zakon HH
    Dev Neurobiol; 2007 Oct; 67(12):1589-97. PubMed ID: 17562532
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chirping and asymmetric jamming avoidance responses in the electric fish
    Petzold JM; Alves-Gomes JA; Smith GT
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 30012575
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genetic drift does not sufficiently explain patterns of electric signal variation among populations of the mormyrid electric fish Paramormyrops kingsleyae.
    Picq S; Sperling J; Cheng CJ; Carlson BA; Gallant JR
    Evolution; 2020 May; 74(5):911-935. PubMed ID: 32187650
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gradual frequency rises in interacting black ghost knifefish, Apteronotus albifrons.
    Serrano-Fernández P
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Sep; 189(9):685-92. PubMed ID: 12898168
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Estrogen modifies an electrocommunication signal by altering the electrocyte sodium current in an electric fish, Sternopygus.
    Dunlap KD; McAnelly ML; Zakon HH
    J Neurosci; 1997 Apr; 17(8):2869-75. PubMed ID: 9092608
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A temporal analysis of testosterone-induced changes in electric organs and electric organ discharges of mormyrid fishes.
    Freedman EG; Olyarchuk J; Marchaterre MA; Bass AH
    J Neurobiol; 1989 Oct; 20(7):619-34. PubMed ID: 2794996
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of captivity on the electric organ discharge and plasma hormone levels in Gnathonemus petersii (Mormyriformes).
    Landsman RE
    J Comp Physiol A; 1993 May; 172(5):619-31. PubMed ID: 8331607
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hormonal modulation of communication signals in electric fish.
    Zakon HH
    Dev Neurosci; 1996; 18(1-2):115-23. PubMed ID: 8840090
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Time-domain signal divergence and discrimination without receptor modification in sympatric morphs of electric fishes.
    Arnegard ME; Jackson BS; Hopkins CD
    J Exp Biol; 2006 Jun; 209(Pt 11):2182-98. PubMed ID: 16709920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.