These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 23142527)
1. Electrochemical behaviour of bacterial nitric oxide reductase-evidence of low redox potential non-heme Fe(B) gives new perspectives on the catalytic mechanism. Cordas CM; Duarte AG; Moura JJ; Moura I Biochim Biophys Acta; 2013 Mar; 1827(3):233-8. PubMed ID: 23142527 [TBL] [Abstract][Full Text] [Related]
2. Low-spin heme b(3) in the catalytic center of nitric oxide reductase from Pseudomonas nautica. Timóteo CG; Pereira AS; Martins CE; Naik SG; Duarte AG; Moura JJ; Tavares P; Huynh BH; Moura I Biochemistry; 2011 May; 50(20):4251-62. PubMed ID: 21452843 [TBL] [Abstract][Full Text] [Related]
3. Reduction of nitric oxide in bacterial nitric oxide reductase--a theoretical model study. Blomberg LM; Blomberg MR; Siegbahn PE Biochim Biophys Acta; 2006 Apr; 1757(4):240-52. PubMed ID: 16774734 [TBL] [Abstract][Full Text] [Related]
4. The mechanism for oxygen reduction in cytochrome c dependent nitric oxide reductase (cNOR) as obtained from a combination of theoretical and experimental results. Blomberg MRA; Ädelroth P Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):884-894. PubMed ID: 28801051 [TBL] [Abstract][Full Text] [Related]
5. Steady-state kinetics with nitric oxide reductase (NOR): new considerations on substrate inhibition profile and catalytic mechanism. Duarte AG; Cordas CM; Moura JJ; Moura I Biochim Biophys Acta; 2014 Mar; 1837(3):375-84. PubMed ID: 24412239 [TBL] [Abstract][Full Text] [Related]
6. Redox-dependent open and closed forms of the active site of the bacterial respiratory nitric-oxide reductase revealed by cyanide binding studies. Grönberg KL; Watmough NJ; Thomson AJ; Richardson DJ; Field SJ J Biol Chem; 2004 Apr; 279(17):17120-5. PubMed ID: 14766741 [TBL] [Abstract][Full Text] [Related]
7. Characterization of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus: enzymatic activity and active site structure. Terasaka E; Okada N; Sato N; Sako Y; Shiro Y; Tosha T Biochim Biophys Acta; 2014 Jul; 1837(7):1019-26. PubMed ID: 24569054 [TBL] [Abstract][Full Text] [Related]
8. Bacterial nitric oxide reductase: a mechanism revisited by an ONIOM (DFT:MM) study. Attia AA; Silaghi-Dumitrescu R J Mol Model; 2015 May; 21(5):130. PubMed ID: 25920393 [TBL] [Abstract][Full Text] [Related]
9. Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen. Flock U; Watmough NJ; Adelroth P Biochemistry; 2005 Aug; 44(31):10711-9. PubMed ID: 16060680 [TBL] [Abstract][Full Text] [Related]
10. Molecular structure and function of bacterial nitric oxide reductase. Hino T; Nagano S; Sugimoto H; Tosha T; Shiro Y Biochim Biophys Acta; 2012 Apr; 1817(4):680-7. PubMed ID: 22001779 [TBL] [Abstract][Full Text] [Related]
11. Structures of reduced and ligand-bound nitric oxide reductase provide insights into functional differences in respiratory enzymes. Sato N; Ishii S; Sugimoto H; Hino T; Fukumori Y; Sako Y; Shiro Y; Tosha T Proteins; 2014 Jul; 82(7):1258-71. PubMed ID: 24338896 [TBL] [Abstract][Full Text] [Related]
12. Effect of Outer-Sphere Side Chain Substitutions on the Fate of the trans Iron-Nitrosyl Dimer in Heme/Nonheme Engineered Myoglobins (Fe(B)Mbs): Insights into the Mechanism of Denitrifying NO Reductases. Matsumura H; Chakraborty S; Reed J; Lu Y; Moënne-Loccoz P Biochemistry; 2016 Apr; 55(14):2091-9. PubMed ID: 27003474 [TBL] [Abstract][Full Text] [Related]
13. A low-redox potential heme in the dinuclear center of bacterial nitric oxide reductase: implications for the evolution of energy-conserving heme-copper oxidases. Grönberg KL; Roldán MD; Prior L; Butland G; Cheesman MR; Richardson DJ; Spiro S; Thomson AJ; Watmough NJ Biochemistry; 1999 Oct; 38(42):13780-6. PubMed ID: 10529222 [TBL] [Abstract][Full Text] [Related]
14. Insights into the recognition and electron transfer steps in nitric oxide reductase from Marinobacter hydrocarbonoclasticus. Ramos S; Almeida RM; Cordas CM; Moura JJG; Pauleta SR; Moura I J Inorg Biochem; 2017 Dec; 177():402-411. PubMed ID: 28942900 [TBL] [Abstract][Full Text] [Related]
15. Nitric oxide activation and reduction by heme-copper oxidoreductases and nitric oxide reductase. Pinakoulaki E; Varotsis C J Inorg Biochem; 2008; 102(5-6):1277-87. PubMed ID: 18334269 [TBL] [Abstract][Full Text] [Related]
16. Can Reduction of NO to N Blomberg MR Biochemistry; 2017 Jan; 56(1):120-131. PubMed ID: 27959492 [TBL] [Abstract][Full Text] [Related]
17. Active-site models of bacterial nitric oxide reductase featuring tris-histidyl and glutamic acid mimics: influence of a carboxylate ligand on Fe(B) binding and the heme Fe/Fe(B) redox potential. Collman JP; Yan YL; Lei J; Dinolfo PH Inorg Chem; 2006 Sep; 45(19):7581-3. PubMed ID: 16961346 [TBL] [Abstract][Full Text] [Related]
18. Spectral properties of bacterial nitric-oxide reductase: resolution of pH-dependent forms of the active site heme b3. Field SJ; Prior L; Roldan MD; Cheesman MR; Thomson AJ; Spiro S; Butt JN; Watmough NJ; Richardson DJ J Biol Chem; 2002 Jun; 277(23):20146-50. PubMed ID: 11901154 [TBL] [Abstract][Full Text] [Related]
19. Properties of a soluble domain of subunit C of a bacterial nitric oxide reductase. Oubrie A; Gemeinhardt S; Field S; Marritt S; Thomson AJ; Saraste M; Richardson DJ Biochemistry; 2002 Sep; 41(35):10858-65. PubMed ID: 12196025 [TBL] [Abstract][Full Text] [Related]
20. Insights into the mechanism of nitric oxide reductase from a Fe Kahle M; Blomberg MRA; Jareck S; Ädelroth P FEBS Lett; 2019 Jun; 593(12):1351-1359. PubMed ID: 31077353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]