These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23142742)

  • 1. Image formation mechanisms in scanning electron microscopy of carbon nanotubes, and retrieval of their intrinsic dimensions.
    Jackman H; Krakhmalev P; Svensson K
    Ultramicroscopy; 2013 Jan; 124():35-9. PubMed ID: 23142742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties.
    Zhang L; Balzano L; Resasco DE
    J Phys Chem B; 2005 Aug; 109(30):14375-81. PubMed ID: 16852808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Desktop growth of carbon-nanotube monoliths with in situ optical imaging.
    Hart AJ; van Laake L; Slocum AH
    Small; 2007 May; 3(5):772-7. PubMed ID: 17410616
    [No Abstract]   [Full Text] [Related]  

  • 4. 10-kV diffractive imaging using newly developed electron diffraction microscope.
    Kamimura O; Dobashi T; Kawahara K; Abe T; Gohara K
    Ultramicroscopy; 2010 Jan; 110(2):130-3. PubMed ID: 19926398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From the physics of secondary electron emission to image contrasts in scanning electron microscopy.
    Cazaux J
    J Electron Microsc (Tokyo); 2012; 61(5):261-84. PubMed ID: 22872280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imperfect surface order and functionalization in vertical carbon nanotube arrays probed by near edge X-ray absorption fine structure spectroscopy (NEXAFS).
    Hemraj-Benny T; Banerjee S; Sambasivan S; Fischer DA; Eres G; Puretzky AA; Geohegan DB; Lowndes DH; Misewich JA; Wong SS
    Phys Chem Chem Phys; 2006 Nov; 8(43):5038-44. PubMed ID: 17091154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The synthesis of high coercivity cobalt-in-carbon nanotube hybrid structures and their optical limiting properties.
    Narayanan TN; Suchand Sandeep CS; Shaijumon MM; Ajayan PM; Philip R; Anantharaman MR
    Nanotechnology; 2009 Jul; 20(28):285702. PubMed ID: 19550014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct preparation of carbon nanotubes and nanobelts from polymer.
    Lu B; Guo X; Bao Z; Li X; Liu Y; Zhu C; Wang Y; Xie E
    Nanoscale; 2011 May; 3(5):2145-9. PubMed ID: 21451825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size of the localized electron emission sites on a closed multiwalled carbon nanotube.
    Heeres EC; Oosterkamp TH; de Jonge N
    Phys Rev Lett; 2012 Jan; 108(3):036804. PubMed ID: 22400772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of multi-walled carbon nanotubes by nebulized spray pyrolysis of a natural precursor: alpha-pinene.
    Lara-Romero J; Alonso-Núñez G; Jiménez-Sandoval S; Avalos-Borja M
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6509-12. PubMed ID: 19205231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Healing of broken multiwalled carbon nanotubes using very low energy electrons in SEM: a route toward complete recovery.
    Kulshrestha N; Misra A; Hazra KS; Roy S; Bajpai R; Mohapatra DR; Misra DS
    ACS Nano; 2011 Mar; 5(3):1724-30. PubMed ID: 21344873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A history of scanning electron microscopy developments: towards "wet-STEM" imaging.
    Bogner A; Jouneau PH; Thollet G; Basset D; Gauthier C
    Micron; 2007; 38(4):390-401. PubMed ID: 16990007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroanalysis using macro-, micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes.
    Dai X; Wildgoose GG; Salter C; Crossley A; Compton RG
    Anal Chem; 2006 Sep; 78(17):6102-8. PubMed ID: 16944890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ electron microscopy electromechanical characterization of a bistable NEMS device.
    Ke C; Espinosa HD
    Small; 2006 Dec; 2(12):1484-9. PubMed ID: 17193010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning ultrafast electron microscopy.
    Yang DS; Mohammed OF; Zewail AH
    Proc Natl Acad Sci U S A; 2010 Aug; 107(34):14993-8. PubMed ID: 20696933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing indirect secondary electron contrast of unstained bacteriophage T4 based on SEM images and Monte Carlo simulations.
    Ogura T
    Biochem Biophys Res Commun; 2009 Mar; 380(2):254-9. PubMed ID: 19166816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical visualization of carbon nanotubes-a unifying linkage between microscopic and spectroscopic characterization techniques.
    Backes C; Englert JM; Bernhard N; Hauke F; Hirsch A
    Small; 2010 Sep; 6(18):1968-73. PubMed ID: 20677186
    [No Abstract]   [Full Text] [Related]  

  • 18. Direct electron-beam writing of highly conductive wires in functionalized fullerene films.
    Gibbons FP; Manickam M; Preece JA; Palmer RE; Robinson AP
    Small; 2009 Dec; 5(23):2750-5. PubMed ID: 19722186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process.
    Ayutsede J; Gandhi M; Sukigara S; Ye H; Hsu CM; Gogotsi Y; Ko F
    Biomacromolecules; 2006 Jan; 7(1):208-14. PubMed ID: 16398517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure.
    Kubota Y; Sohn J; Hatada S; Schurr M; Straehle J; Gour A; Neujahr R; Miki T; Mikula S; Kawaguchi Y
    Nat Commun; 2018 Jan; 9(1):437. PubMed ID: 29382816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.