These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 23142839)

  • 21. Construction and Implementation of Carbon Fiber Microelectrode Arrays for Chronic and Acute In Vivo Recordings.
    Reikersdorfer KN; Stacy AK; Bressler DA; Hayashi LS; Hengen KB; Van Hooser SD
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34424245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature.
    Zhang A; Mandeville ET; Xu L; Stary CM; Lo EH; Lieber CM
    Science; 2023 Jul; 381(6655):306-312. PubMed ID: 37471542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays.
    Kozai TD; Du Z; Gugel ZV; Smith MA; Chase SM; Bodily LM; Caparosa EM; Friedlander RM; Cui XT
    J Neurosci Methods; 2015 Mar; 242():15-40. PubMed ID: 25542351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Implantable Neural Microelectrodes: How to Reduce Immune Response.
    Xiang Y; Zhao Y; Cheng T; Sun S; Wang J; Pei R
    ACS Biomater Sci Eng; 2024 May; 10(5):2762-2783. PubMed ID: 38591141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces.
    Moxon KA; Hallman S; Aslani A; Kalkhoran NM; Lelkes PI
    J Biomater Sci Polym Ed; 2007; 18(10):1263-81. PubMed ID: 17939885
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain.
    Golabchi A; Woeppel KM; Li X; Lagenaur CF; Cui XT
    Biosens Bioelectron; 2020 May; 155():112096. PubMed ID: 32090868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants.
    Prasad A; Xue QS; Sankar V; Nishida T; Shaw G; Streit WJ; Sanchez JC
    J Neural Eng; 2012 Oct; 9(5):056015. PubMed ID: 23010756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A superoxide scavenging coating for improving tissue response to neural implants.
    Zheng XS; Snyder NR; Woeppel K; Barengo JH; Li X; Eles J; Kolarcik CL; Cui XT
    Acta Biomater; 2019 Nov; 99():72-83. PubMed ID: 31446048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film.
    Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR
    J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation.
    Lee JH; Kim H; Kim JH; Lee SH
    Lab Chip; 2016 Mar; 16(6):959-76. PubMed ID: 26891410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio.
    Baranauskas G; Maggiolini E; Castagnola E; Ansaldo A; Mazzoni A; Angotzi GN; Vato A; Ricci D; Panzeri S; Fadiga L
    J Neural Eng; 2011 Dec; 8(6):066013. PubMed ID: 22064890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive movable neural interfaces for monitoring single neurons in the brain.
    Muthuswamy J; Anand S; Sridharan A
    Front Neurosci; 2011; 5():94. PubMed ID: 21927593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon nanotube coating improves neuronal recordings.
    Keefer EW; Botterman BR; Romero MI; Rossi AF; Gross GW
    Nat Nanotechnol; 2008 Jul; 3(7):434-9. PubMed ID: 18654569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings.
    Kozai TD; Catt K; Du Z; Na K; Srivannavit O; Haque RU; Seymour J; Wise KD; Yoon E; Cui XT
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):111-9. PubMed ID: 26087481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micro- and nanotechnology for neural electrode-tissue interfaces.
    Liu S; Zhao Y; Hao W; Zhang XD; Ming D
    Biosens Bioelectron; 2020 Dec; 170():112645. PubMed ID: 33010703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon fiber on polyimide ultra-microelectrodes.
    Gillis WF; Lissandrello CA; Shen J; Pearre BW; Mertiri A; Deku F; Cogan S; Holinski BJ; Chew DJ; White AE; Otchy TM; Gardner TJ
    J Neural Eng; 2018 Feb; 15(1):016010. PubMed ID: 28905812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid modulation of local neural activity by controlled drug release from polymer-coated recording microelectrodes.
    Stauffer WR; Lau PM; Bi GQ; Cui XT
    J Neural Eng; 2011 Aug; 8(4):044001. PubMed ID: 21633143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.