These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 23142849)

  • 21. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Motor learning through the combination of primitives.
    Mussa-Ivaldi FA; Bizzi E
    Philos Trans R Soc Lond B Biol Sci; 2000 Dec; 355(1404):1755-69. PubMed ID: 11205339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A dynamic model of quadriceps and hamstrings function.
    Frigo C; Pavan EE; Brunner R
    Gait Posture; 2010 Jan; 31(1):100-3. PubMed ID: 19836244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computer modeling and simulation of human movement.
    Pandy MG
    Annu Rev Biomed Eng; 2001; 3():245-73. PubMed ID: 11447064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Muscle activation strategies in multiple muscle systems.
    Shinohara M
    Med Sci Sports Exerc; 2009 Jan; 41(1):181-3. PubMed ID: 19106783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters.
    Winby CR; Lloyd DG; Kirk TB
    J Biomech; 2008; 41(8):1682-8. PubMed ID: 18456272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contributions of the inside and outside leg to maintenance of curvilinear motion on a natural turf surface.
    Smith N; Dyson R; Hale T; Janaway L
    Gait Posture; 2006 Dec; 24(4):453-8. PubMed ID: 16473010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of optimization constraints in uneven parallel bar dismount swing simulations.
    Sheets AL; Hubbard M
    J Biomech; 2009 Aug; 42(11):1685-91. PubMed ID: 19457485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle-driven finite element simulation of human foot movements.
    Spyrou LA; Aravas N
    Comput Methods Biomech Biomed Engin; 2012; 15(9):925-34. PubMed ID: 21711216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence of residual force enhancement for multi-joint leg extension.
    Hahn D; Seiberl W; Schmidt S; Schweizer K; Schwirtz A
    J Biomech; 2010 May; 43(8):1503-8. PubMed ID: 20167325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control.
    Zajac FE
    Crit Rev Biomed Eng; 1989; 17(4):359-411. PubMed ID: 2676342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coordinated three-dimensional motion of the head and torso by dynamic neural networks.
    Kim J; Hemami H
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(5):653-66. PubMed ID: 18255985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of mass and momentum of inertia alternation on individual muscle forces during swing phase of transtibial amputee gait.
    Dabiri Y; Najarian S; Eslami MR; Zahedi S; Moser D; Shirzad E; Allami M
    Kobe J Med Sci; 2010 Sep; 56(3):E92-7. PubMed ID: 21063155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cerebellar thalamic activity in the macaque monkey encodes the duration but not the force or velocity of wrist movement.
    Ivanusic JJ; Bourke DW; Xu ZM; Butler EG; Horne MK
    Brain Res; 2005 Apr; 1041(2):181-97. PubMed ID: 15829227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulation of the primate motor cortex and free arm movements in three-dimensional space: a robot arm system controlled by an artificial neural network.
    Dauffenbach LM
    Biomed Sci Instrum; 1999; 35():360-5. PubMed ID: 11143378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method.
    Golkhou V; Parnianpour M; Lucas C
    Comput Methods Biomech Biomed Engin; 2005 Apr; 8(2):103-13. PubMed ID: 16154874
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A control system for a flexible spine belly-dancing humanoid.
    Or J
    Artif Life; 2006; 12(1):63-87. PubMed ID: 16393451
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The discontinuous nature of motor execution. I. A model concept for single-muscle multiple-task coordination.
    Staude G; Dengler R; Wolf W
    Biol Cybern; 2000 Jan; 82(1):23-33. PubMed ID: 10650905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective.
    Giszter S; Patil V; Hart C
    Prog Brain Res; 2007; 165():323-46. PubMed ID: 17925255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.