These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23143101)

  • 1. Genetic interactions suggest multiple distinct roles of the arch and core helicase domains of Mtr4 in Rrp6 and exosome function.
    Klauer AA; van Hoof A
    Nucleic Acids Res; 2013 Jan; 41(1):533-41. PubMed ID: 23143101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase.
    Schuch B; Feigenbutz M; Makino DL; Falk S; Basquin C; Mitchell P; Conti E
    EMBO J; 2014 Dec; 33(23):2829-46. PubMed ID: 25319414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and reconstitution of yeast Mpp6-nuclear exosome complexes reveals that Mpp6 stimulates RNA decay and recruits the Mtr4 helicase.
    Wasmuth EV; Zinder JC; Zattas D; Das M; Lima CD
    Elife; 2017 Jul; 6():. PubMed ID: 28742025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved Residues at the Mtr4 C-Terminus Coordinate Helicase Activity and Exosome Interactions.
    Yim MK; Stuart CJ; Pond MI; van Hoof A; Johnson SJ
    Biochemistry; 2024 Jan; 63(1):159-170. PubMed ID: 38085597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TRAMP complex enhances RNA degradation by the nuclear exosome component Rrp6.
    Callahan KP; Butler JS
    J Biol Chem; 2010 Feb; 285(6):3540-3547. PubMed ID: 19955569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into the interaction of the nuclear exosome helicase Mtr4 with the preribosomal protein Nop53.
    Falk S; Tants JN; Basquin J; Thoms M; Hurt E; Sattler M; Conti E
    RNA; 2017 Dec; 23(12):1780-1787. PubMed ID: 28883156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depletion of the yeast nuclear exosome subunit Rrp6 results in accumulation of polyadenylated RNAs in a discrete domain within the nucleolus.
    Carneiro T; Carvalho C; Braga J; Rino J; Milligan L; Tollervey D; Carmo-Fonseca M
    Mol Cell Biol; 2007 Jun; 27(11):4157-65. PubMed ID: 17403903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Mtr4 ratchet helix and arch domain both function to promote RNA unwinding.
    Taylor LL; Jackson RN; Rexhepaj M; King AK; Lott LK; van Hoof A; Johnson SJ
    Nucleic Acids Res; 2014 Dec; 42(22):13861-72. PubMed ID: 25414331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MTR4 adaptor PICT1 functions in two distinct steps during pre-rRNA processing.
    Miyao S; Saito K; Oshima R; Kawahara K; Nagahama M
    Biochem Biophys Res Commun; 2022 Dec; 637():203-209. PubMed ID: 36403484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing.
    Jackson RN; Klauer AA; Hintze BJ; Robinson H; van Hoof A; Johnson SJ
    EMBO J; 2010 Jul; 29(13):2205-16. PubMed ID: 20512111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in Mtr4 Structural Domains Reveal Their Important Role in Regulating tRNAiMet Turnover in Saccharomyces cerevisiae and Mtr4p Enzymatic Activities In Vitro.
    Li Y; Burclaff J; Anderson JT
    PLoS One; 2016; 11(1):e0148090. PubMed ID: 26820724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of S. cerevisiae Ski2, a DExH helicase associated with the cytoplasmic functions of the exosome.
    Halbach F; Rode M; Conti E
    RNA; 2012 Jan; 18(1):124-34. PubMed ID: 22114319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance.
    Weir JR; Bonneau F; Hentschel J; Conti E
    Proc Natl Acad Sci U S A; 2010 Jul; 107(27):12139-44. PubMed ID: 20566885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast exosome mutants accumulate 3'-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs.
    van Hoof A; Lennertz P; Parker R
    Mol Cell Biol; 2000 Jan; 20(2):441-52. PubMed ID: 10611222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome-wide analysis of alternative routes for RNA substrates into the exosome complex.
    Delan-Forino C; Schneider C; Tollervey D
    PLoS Genet; 2017 Mar; 13(3):e1006699. PubMed ID: 28355211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for MTR4-ZCCHC8 interactions that stimulate the MTR4 helicase in the nuclear exosome-targeting complex.
    Puno MR; Lima CD
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):E5506-E5515. PubMed ID: 29844170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate discrimination and quality control require each catalytic activity of TRAMP and the nuclear RNA exosome.
    Das M; Zattas D; Zinder JC; Wasmuth EV; Henri J; Lima CD
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33782132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactome analysis of the Tudor domain-containing protein SPF30 which associates with the MTR4-exosome RNA-decay machinery under the regulation of AAA-ATPase NVL2.
    Ishida YI; Miyao S; Saito M; Hiraishi N; Nagahama M
    Int J Biochem Cell Biol; 2021 Mar; 132():105919. PubMed ID: 33422691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen-deuterium exchange mass spectrometry of Mtr4 with diverse RNAs reveals substrate-dependent dynamics and interfaces in the arch.
    Zhang N; Olsen KJ; Ball D; Johnson SJ; D'Arcy S
    Nucleic Acids Res; 2022 Apr; 50(7):4042-4053. PubMed ID: 35380691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rrp47 functions in RNA surveillance and stable RNA processing when divorced from the exoribonuclease and exosome-binding domains of Rrp6.
    Garland W; Feigenbutz M; Turner M; Mitchell P
    RNA; 2013 Dec; 19(12):1659-68. PubMed ID: 24106327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.