These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23143108)

  • 21. Efficient gap repair catalyzed in vitro by an intrinsic DNA polymerase activity of human immunodeficiency virus type 1 integrase.
    Acel A; Udashkin BE; Wainberg MA; Faust EA
    J Virol; 1998 Mar; 72(3):2062-71. PubMed ID: 9499061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. De novo DNA synthesis by human DNA polymerase lambda, DNA polymerase mu and terminal deoxyribonucleotidyl transferase.
    Ramadan K; Shevelev IV; Maga G; Hübscher U
    J Mol Biol; 2004 May; 339(2):395-404. PubMed ID: 15136041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. End-bridging is required for pol mu to efficiently promote repair of noncomplementary ends by nonhomologous end joining.
    Davis BJ; Havener JM; Ramsden DA
    Nucleic Acids Res; 2008 May; 36(9):3085-94. PubMed ID: 18397950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding.
    Bailey MF; Van der Schans EJ; Millar DP
    Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deletion errors generated during replication of CAG repeats.
    Kroutil LC; Kunkel TA
    Nucleic Acids Res; 1999 Sep; 27(17):3481-6. PubMed ID: 10446236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The DNA polymerase lambda is required for the repair of non-compatible DNA double strand breaks by NHEJ in mammalian cells.
    Capp JP; Boudsocq F; Bertrand P; Laroche-Clary A; Pourquier P; Lopez BS; Cazaux C; Hoffmann JS; Canitrot Y
    Nucleic Acids Res; 2006; 34(10):2998-3007. PubMed ID: 16738138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural Determinants Responsible for the Preferential Insertion of Ribonucleotides by Bacterial NHEJ PolDom.
    Sánchez-Salvador A; de Vega M
    Biomolecules; 2020 Jan; 10(2):. PubMed ID: 32019147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Essential role for polymerase specialization in cellular nonhomologous end joining.
    Pryor JM; Waters CA; Aza A; Asagoshi K; Strom C; Mieczkowski PA; Blanco L; Ramsden DA
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):E4537-45. PubMed ID: 26240371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel 3'-ribonuclease and 3'-phosphatase activities of the bacterial non-homologous end-joining protein, DNA ligase D.
    Zhu H; Shuman S
    J Biol Chem; 2005 Jul; 280(28):25973-81. PubMed ID: 15897197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lesion bypass by human DNA polymerase mu reveals a template-dependent, sequence-independent nucleotidyl transferase activity.
    Covo S; Blanco L; Livneh Z
    J Biol Chem; 2004 Jan; 279(2):859-65. PubMed ID: 14581466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ability of polymerase eta and T7 DNA polymerase to bypass bulge structures.
    Cannistraro VJ; Taylor JS
    J Biol Chem; 2007 Apr; 282(15):11188-96. PubMed ID: 17303570
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational changes during normal and error-prone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence.
    DeLucia AM; Grindley ND; Joyce CM
    Biochemistry; 2007 Sep; 46(38):10790-803. PubMed ID: 17725324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lesion bypass activities of human DNA polymerase mu.
    Zhang Y; Wu X; Guo D; Rechkoblit O; Taylor JS; Geacintov NE; Wang Z
    J Biol Chem; 2002 Nov; 277(46):44582-7. PubMed ID: 12228225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA polymerase μ is a global player in the repair of non-homologous end-joining substrates.
    Chayot R; Montagne B; Ricchetti M
    DNA Repair (Amst); 2012 Jan; 11(1):22-34. PubMed ID: 22071146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Double-strand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae.
    Sundararajan R; Gellon L; Zunder RM; Freudenreich CH
    Genetics; 2010 Jan; 184(1):65-77. PubMed ID: 19901069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of DNA structure on DNA polymerase beta active site function: extension of mutagenic DNA intermediates.
    Beard WA; Shock DD; Wilson SH
    J Biol Chem; 2004 Jul; 279(30):31921-9. PubMed ID: 15145936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proliferating cell nuclear antigen prevents trinucleotide repeat expansions by promoting repeat deletion and hairpin removal.
    Beaver JM; Lai Y; Rolle SJ; Liu Y
    DNA Repair (Amst); 2016 Dec; 48():17-29. PubMed ID: 27793507
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pre-steady-state kinetic studies of the fidelity of human DNA polymerase mu.
    Roettger MP; Fiala KA; Sompalli S; Dong Y; Suo Z
    Biochemistry; 2004 Nov; 43(43):13827-38. PubMed ID: 15504045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence that base stacking potential in annealed 3' overhangs determines polymerase utilization in yeast nonhomologous end joining.
    Daley JM; Wilson TE
    DNA Repair (Amst); 2008 Jan; 7(1):67-76. PubMed ID: 17881298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutational signatures of non-homologous and polymerase theta-mediated end-joining in embryonic stem cells.
    Schimmel J; Kool H; van Schendel R; Tijsterman M
    EMBO J; 2017 Dec; 36(24):3634-3649. PubMed ID: 29079701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.