These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 23143531)
1. Influence of mass transfer on stable isotope fractionation. Thullner M; Fischer A; Richnow HH; Wick LY Appl Microbiol Biotechnol; 2013 Jan; 97(2):441-52. PubMed ID: 23143531 [TBL] [Abstract][Full Text] [Related]
2. Field applicability of Compound-Specific Isotope Analysis (CSIA) for characterization and quantification of in situ contaminant degradation in aquifers. Braeckevelt M; Fischer A; Kästner M Appl Microbiol Biotechnol; 2012 Jun; 94(6):1401-21. PubMed ID: 22573267 [TBL] [Abstract][Full Text] [Related]
3. Assessing microbial degradation of o-xylene at field-scale from the reduction in mass flow rate combined with compound-specific isotope analyses. Peter A; Steinbach A; Liedl R; Ptak T; Michaelis W; Teutsch G J Contam Hydrol; 2004 Jul; 71(1-4):127-54. PubMed ID: 15145565 [TBL] [Abstract][Full Text] [Related]
4. Estimating pathway-specific contributions to biodegradation in aquifers based on dual isotope analysis: theoretical analysis and reactive transport simulations. Centler F; Heße F; Thullner M J Contam Hydrol; 2013 Sep; 152():97-116. PubMed ID: 23896520 [TBL] [Abstract][Full Text] [Related]
5. Numerical simulation of isotope fractionation in steady-state bioreactive transport controlled by transverse mixing. Eckert D; Rolle M; Cirpka OA J Contam Hydrol; 2012 Oct; 140-141():95-106. PubMed ID: 23017261 [TBL] [Abstract][Full Text] [Related]
6. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. Elsner M J Environ Monit; 2010 Nov; 12(11):2005-31. PubMed ID: 21038038 [TBL] [Abstract][Full Text] [Related]
7. Impact of cell density on microbially induced stable isotope fractionation. Kampara M; Thullner M; Harms H; Wick LY Appl Microbiol Biotechnol; 2009 Jan; 81(5):977-85. PubMed ID: 19015849 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the relationship between microbial degradation processes at a hydrocarbon contaminated site using isotopic methods. Feisthauer S; Seidel M; Bombach P; Traube S; Knöller K; Wange M; Fachmann S; Richnow HH J Contam Hydrol; 2012 May; 133():17-29. PubMed ID: 22484391 [TBL] [Abstract][Full Text] [Related]
9. Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers. Meckenstock RU; Morasch B; Griebler C; Richnow HH J Contam Hydrol; 2004 Dec; 75(3-4):215-55. PubMed ID: 15610901 [TBL] [Abstract][Full Text] [Related]
10. Complementing approaches to demonstrate chlorinated solvent biodegradation in a complex pollution plume: Mass balance, PCR and compound-specific stable isotope analysis. Courbet C; Rivière A; Jeannottat S; Rinaldi S; Hunkeler D; Bendjoudi H; de Marsily G J Contam Hydrol; 2011 Nov; 126(3-4):315-29. PubMed ID: 22115095 [TBL] [Abstract][Full Text] [Related]
11. Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation. Richnow HH; Annweiler E; Michaelis W; Meckenstock RU J Contam Hydrol; 2003 Aug; 65(1-2):101-20. PubMed ID: 12855203 [TBL] [Abstract][Full Text] [Related]
12. Impact of bioavailability restrictions on microbially induced stable isotope fractionation. 2. Experimental evidence. Kampara M; Thullner M; Richnow HH; Harms H; Wick LY Environ Sci Technol; 2008 Sep; 42(17):6552-8. PubMed ID: 18800529 [TBL] [Abstract][Full Text] [Related]
13. Sulfur transformations in pilot-scale constructed wetland treating high sulfate-containing contaminated groundwater: a stable isotope assessment. Wu S; Jeschke C; Dong R; Paschke H; Kuschk P; Knöller K Water Res; 2011 Dec; 45(20):6688-98. PubMed ID: 22055121 [TBL] [Abstract][Full Text] [Related]
14. Influence of mass-transfer limitations on carbon isotope fractionation during microbial dechlorination of trichloroethene. Aeppli C; Berg M; Cirpka OA; Holliger C; Schwarzenbach RP; Hofstetter TB Environ Sci Technol; 2009 Dec; 43(23):8813-20. PubMed ID: 19943651 [TBL] [Abstract][Full Text] [Related]
16. Large carbon isotope fractionation during biodegradation of chloroform by Dehalobacter cultures. Chan CC; Mundle SO; Eckert T; Liang X; Tang S; Lacrampe-Couloume G; Edwards EA; Lollar BS Environ Sci Technol; 2012 Sep; 46(18):10154-60. PubMed ID: 22900494 [TBL] [Abstract][Full Text] [Related]
17. Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers. Höyng D; Prommer H; Blum P; Grathwohl P; D'Affonseca FM J Contam Hydrol; 2015 Mar; 174():10-27. PubMed ID: 25638275 [TBL] [Abstract][Full Text] [Related]
18. A quantitative framework for understanding complex interactions between competing interfacial processes and in situ biodegradation. Johnson MA; Song X; Seagren EA J Contam Hydrol; 2013 Mar; 146():16-36. PubMed ID: 23396269 [TBL] [Abstract][Full Text] [Related]
19. Application of stable isotope ratio analysis for biodegradation monitoring in groundwater. Hatzinger PB; Böhlke JK; Sturchio NC Curr Opin Biotechnol; 2013 Jun; 24(3):542-9. PubMed ID: 23279929 [TBL] [Abstract][Full Text] [Related]
20. Linear exchange model for the description of mass transfer limited bioavailability at the pore scale. Hesse F; Harms H; Attinger S; Thullner M Environ Sci Technol; 2010 Mar; 44(6):2064-71. PubMed ID: 20175545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]