These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 23143567)

  • 41. Three-dimensional shear wave elastography on conventional ultrasound scanners with external vibration.
    Huang C; Song P; Mellema DC; Gong P; Lok UW; Tang S; Ling W; Meixner DD; Urban MW; Manduca A; Greenleaf JF; Chen S
    Phys Med Biol; 2020 Nov; 65(21):215009. PubMed ID: 32663816
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Theoretical limitations of the elastic wave equation inversion for tissue elastography.
    Baghani A; Salcudean S; Rohling R
    J Acoust Soc Am; 2009 Sep; 126(3):1541. PubMed ID: 19739767
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Correlation analysis of three-dimensional strain imaging using ultrasound two-dimensional array transducers.
    Rao M; Varghese T
    J Acoust Soc Am; 2008 Sep; 124(3):1858-65. PubMed ID: 19045676
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Shear modulus imaging with 2-D transient elastography.
    Sandrin L; Tanter M; Catheline S; Fink M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Apr; 49(4):426-35. PubMed ID: 11989698
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Shear elasticity estimation from surface wave: the time reversal approach.
    Brum J; Catheline S; Benech N; Negreira C
    J Acoust Soc Am; 2008 Dec; 124(6):3377-80. PubMed ID: 19206764
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements.
    Elkateb Hachemi M; Callé S; Remenieras JP
    Ultrasonics; 2006 Dec; 44 Suppl 1():e221-5. PubMed ID: 16843510
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Noise reduction for ultrasonic elastography using transmit-side frequency compounding: a preliminary study.
    Cui S; Liu DC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):509-16. PubMed ID: 21429843
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrafast imaging of ultrasound contrast agents.
    Couture O; Bannouf S; Montaldo G; Aubry JF; Fink M; Tanter M
    Ultrasound Med Biol; 2009 Nov; 35(11):1908-16. PubMed ID: 19699026
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Shear wave velocity imaging using transient electrode perturbation: phantom and ex vivo validation.
    DeWall RJ; Varghese T; Madsen EL
    IEEE Trans Med Imaging; 2011 Mar; 30(3):666-78. PubMed ID: 21075719
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methodical study on the estimation of strain in shearing and rotating structures using radio frequency ultrasound based on 1-D and 2-D strain estimation techniques.
    Lopata R; Hansen H; Nillesen M; Thijssen J; Kapusta L; de Korte C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):855-65. PubMed ID: 20378448
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of 2-D motion tracking in ultrasound with dual transducers.
    Abeysekera JM; Zahiri Azar R; Goksel O; Rohling R; Salcudean SE
    Ultrasonics; 2012 Jan; 52(1):156-68. PubMed ID: 21899871
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A diffraction correction for storage and loss moduli imaging using radiation force based elastography.
    Budelli E; Brum J; Bernal M; Deffieux T; Tanter M; Lema P; Negreira C; Gennisson JL
    Phys Med Biol; 2017 Jan; 62(1):91-106. PubMed ID: 27973354
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of Transient Shear Wave in Lossy Media.
    Parker KJ; Ormachea J; Will S; Hah Z
    Ultrasound Med Biol; 2018 Jul; 44(7):1504-1515. PubMed ID: 29706408
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three-dimensional transient and harmonic shear-wave scattering by a soft cylinder for dynamic vascular elastography.
    Henni AH; Schmitt C; Cloutier G
    J Acoust Soc Am; 2008 Oct; 124(4):2394-405. PubMed ID: 19062877
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of Reconstruction Parameters for 2-D Comb-Push Ultrasound Shear Wave Elastography.
    Racedo J; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):254-263. PubMed ID: 30507530
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modality independent elastography (MIE): a new approach to elasticity imaging.
    Washington CW; Miga MI
    IEEE Trans Med Imaging; 2004 Sep; 23(9):1117-28. PubMed ID: 15377121
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transient elastography using impulsive ultrasound radiation force: a preliminary comparison with surface palpation elastography.
    Melodelima D; Bamber JC; Duck FA; Shipley JA
    Ultrasound Med Biol; 2007 Jun; 33(6):959-69. PubMed ID: 17445967
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Probe Oscillation Shear Wave Elastography: Initial In Vivo Results in Liver.
    Mellema DC; Song P; Kinnick RR; Trzasko JD; Urban MW; Greenleaf JF; Manduca A; Chen S
    IEEE Trans Med Imaging; 2018 May; 37(5):1214-1223. PubMed ID: 29727284
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 2-D arterial wall motion imaging using ultrafast ultrasound and transverse oscillations.
    Salles S; Chee AJ; Garcia D; Yu AC; Vray D; Liebgott H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1047-58. PubMed ID: 26067039
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium.
    Chatelin S; Gennisson JL; Bernal M; Tanter M; Pernot M
    Phys Med Biol; 2015 May; 60(9):3639-54. PubMed ID: 25880794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.