These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23143580)

  • 1. Crosstalk reduction for high-frequency linear-array ultrasound transducers using 1-3 piezocomposites with pseudo-random pillars.
    Yang HC; Cannata J; Williams J; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2312-21. PubMed ID: 23143580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of triangular pillar geometry on high- frequency piezocomposite transducers.
    Yin J; Lee M; Brown J; Cherin E; Foster F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):957-68. PubMed ID: 20378458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite.
    Cannata JM; Williams JA; Zhang L; Hu CH; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2202-12. PubMed ID: 21989884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and fabrication of ultrafine piezoelectric composites.
    Yin J; Lukacs M; Harasiewicz KA; Foster FS
    Ultrason Imaging; 2005 Jan; 27(1):54-64. PubMed ID: 16003926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and performance of high-frequency composite transducers with triangular-pillar geometry.
    Brown JA; Chérin E; Yin J; Foster FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):827-36. PubMed ID: 19406712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The application of high permittivity piezoelectric ceramics to 2D array transducers for medical imaging.
    Felix N; Tran-Huu-Hue LP; Walker L; Millar C; Lethiecq M
    Ultrasonics; 2000 Mar; 38(1-8):127-30. PubMed ID: 10829643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?
    Oralkan O; Ergun AS; Johnson JA; Karaman M; Demirci U; Kaviani K; Lee TH; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Nov; 49(11):1596-610. PubMed ID: 12484483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a KNN Ceramic-Based Lead-Free Linear Array Ultrasonic Transducer.
    Zhang Z; Chen R; Wang B; Zhang T; Su M; Liu R; Yang J; Cao X; Li Y; Zheng H; Shung KK; Humayun MS; Zhou Q; Qiu W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2113-2120. PubMed ID: 30183624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a 35-MHz piezo-composite ultrasound array for medical imaging.
    Cannata JM; Williams JA; Zhou Q; Ritter TA; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):224-36. PubMed ID: 16471449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance and characterization of new micromachined high-frequency linear arrays.
    Lukacs M; Yin J; Pang G; Garcia RC; Cherin E; Williams R; Mehi J; Foster FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1719-29. PubMed ID: 17036781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-frequency ultrasound annular-array imaging. Part I: array design and fabrication.
    Snook KA; Hu CH; Shrout TR; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Feb; 53(2):300-8. PubMed ID: 16529104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-frequency annular-array transducer using an interdigital bonded 1-3 composite.
    Chabok HR; Cannata JM; Kim HH; Williams JA; Park J; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jan; 58(1):206-14. PubMed ID: 21244988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular array.
    Liu C; Djuth F; Li X; Chen R; Zhou Q; Shung KK
    Ultrasonics; 2012 Apr; 52(4):497-502. PubMed ID: 22119324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfabrication of electrode patterns for high-frequency ultrasound transducer arrays.
    Bernassau AL; García-Gancedo L; Hutson D; Démoré CE; McAneny JJ; Button TW; Cochran S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1820-9. PubMed ID: 22899129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of signal-to-noise ratio for multilayer PZT transducers.
    Goldberg RL; Smith SW
    Ultrason Imaging; 1995 Apr; 17(2):95-113. PubMed ID: 7571210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental analysis of 1-3 piezocomposites for high-intensity focused ultrasound transducer applications.
    Chen GS; Liu HC; Lin YC; Lin YL
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):128-34. PubMed ID: 23193224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 30-MHz piezo-composite ultrasound array for medical imaging applications.
    Ritter TA; Shrout TR; Tutwiler R; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Feb; 49(2):217-30. PubMed ID: 11885679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-layered PZT/polymer composites to increase signal-to-noise ratio and resolution for medical ultrasound transducers part II: thick film technology.
    Mills DM; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jul; 49(7):1005-14. PubMed ID: 12152936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo imaging using a copolymer phased array.
    Goldberg RL; Smith SW; Brown LF
    Ultrason Imaging; 1992 Jul; 14(3):234-48. PubMed ID: 1448890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfabricated 1-3 composite acoustic matching layers for 15 MHz transducers.
    Manh T; Jensen GU; Johansen TF; Hoff L
    Ultrasonics; 2013 Aug; 53(6):1141-9. PubMed ID: 23522684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.