BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23143675)

  • 1. Spatiotemporal pattern of rod degeneration in the S334ter-line-3 rat model of retinitis pigmentosa.
    Zhu CL; Ji Y; Lee EJ; Grzywacz NM
    Cell Tissue Res; 2013 Jan; 351(1):29-40. PubMed ID: 23143675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Müller cells in cone mosaic rearrangement in a rat model of retinitis pigmentosa.
    Lee EJ; Ji Y; Zhu CL; Grzywacz NM
    Glia; 2011 Jul; 59(7):1107-17. PubMed ID: 21547953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rearrangement of the cone mosaic in the retina of the rat model of retinitis pigmentosa.
    Ji Y; Zhu CL; Grzywacz NM; Lee EJ
    J Comp Neurol; 2012 Mar; 520(4):874-88. PubMed ID: 22102145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of cone molecular markers in rhodopsin-mutant human retinas with retinitis pigmentosa.
    John SK; Smith JE; Aguirre GD; Milam AH
    Mol Vis; 2000 Nov; 6():204-15. PubMed ID: 11063754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration.
    Viringipurampeer IA; Gregory-Evans CY; Metcalfe AL; Bashar E; Moritz OL; Gregory-Evans K
    Mol Neurobiol; 2019 Mar; 56(3):1637-1652. PubMed ID: 29911255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the photoreceptor mosaic of P23H-1 rats during retinal degeneration: implications for rod-cone dependent survival.
    García-Ayuso D; Ortín-Martínez A; Jiménez-López M; Galindo-Romero C; Cuenca N; Pinilla I; Vidal-Sanz M; Agudo-Barriuso M; Villegas-Pérez MP
    Invest Ophthalmol Vis Sci; 2013 Aug; 54(8):5888-900. PubMed ID: 23908186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term preservation of cone photoreceptors and visual acuity in rd10 mutant mice exposed to continuous environmental enrichment.
    Barone I; Novelli E; Strettoi E
    Mol Vis; 2014; 20():1545-56. PubMed ID: 25489227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidants slow photoreceptor cell death in mouse models of retinitis pigmentosa.
    Komeima K; Rogers BS; Campochiaro PA
    J Cell Physiol; 2007 Dec; 213(3):809-15. PubMed ID: 17520694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of rhodopsin mis-sorting and constitutive activation in a transgenic rat model of retinitis pigmentosa.
    Green ES; Menz MD; LaVail MM; Flannery JG
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1546-53. PubMed ID: 10798675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodopsin transgenic pigs as a model for human retinitis pigmentosa.
    Li ZY; Wong F; Chang JH; Possin DE; Hao Y; Petters RM; Milam AH
    Invest Ophthalmol Vis Sci; 1998 Apr; 39(5):808-19. PubMed ID: 9538889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A diffusible factor from normal retinal cells promotes rod photoreceptor survival in an in vitro model of retinitis pigmentosa.
    Streichert LC; Birnbach CD; Reh TA
    J Neurobiol; 1999 Jun; 39(4):475-90. PubMed ID: 10380070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina.
    Cuenca N; Pinilla I; Sauvé Y; Lu B; Wang S; Lund RD
    Neuroscience; 2004; 127(2):301-17. PubMed ID: 15262321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell type-specific changes in retinal ganglion cell function induced by rod death and cone reorganization in rats.
    Yu WQ; Grzywacz NM; Lee EJ; Field GD
    J Neurophysiol; 2017 Jul; 118(1):434-454. PubMed ID: 28424296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease.
    Sakami S; Imanishi Y; Palczewski K
    FASEB J; 2019 Mar; 33(3):3680-3692. PubMed ID: 30462532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of TIMP-1 on the cone mosaic in the retina of the rat model of retinitis pigmentosa.
    Ji Y; Yu WQ; Eom YS; Bruce F; Craft CM; Grzywacz NM; Lee EJ
    Invest Ophthalmol Vis Sci; 2014 Dec; 56(1):352-64. PubMed ID: 25515575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rod photoreceptor neurite sprouting in retinitis pigmentosa.
    Li ZY; Kljavin IJ; Milam AH
    J Neurosci; 1995 Aug; 15(8):5429-38. PubMed ID: 7643192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life history of cones in the rhodopsin-mutant P23H-3 rat: evidence of long-term survival.
    Chrysostomou V; Stone J; Valter K
    Invest Ophthalmol Vis Sci; 2009 May; 50(5):2407-16. PubMed ID: 19117918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clusterin enhances cell survival by suppressing neuronal nitric-oxide synthase expression in the rhodopsin S334ter-line3 retinitis pigmentosa model.
    Vargas A; Yamamoto KL; Craft CM; Lee EJ
    Brain Res; 2021 Oct; 1768():147575. PubMed ID: 34242654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autosomal dominant retinitis pigmentosa caused by the threonine-17-methionine rhodopsin mutation: retinal histopathology and immunocytochemistry.
    Li ZY; Jacobson SG; Milam AH
    Exp Eye Res; 1994 Apr; 58(4):397-408. PubMed ID: 7925677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A frameshift mutation in RPGR exon ORF15 causes photoreceptor degeneration and inner retina remodeling in a model of X-linked retinitis pigmentosa.
    Beltran WA; Hammond P; Acland GM; Aguirre GD
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1669-81. PubMed ID: 16565408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.