These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23143919)

  • 21. Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) block copolymer.
    Shim WS; Kim JH; Park H; Kim K; Chan Kwon I; Lee DS
    Biomaterials; 2006 Oct; 27(30):5178-85. PubMed ID: 16797693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of alignment and differentiation of skeletal myoblasts by biomimetic materials.
    Palamà IE; Coluccia AM; Gigli G; Riehle M
    Integr Biol (Camb); 2012 Oct; 4(10):1299-309. PubMed ID: 22899167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro and in vivo safety evaluation of biodegradable self-assembled monomethyl poly (ethylene glycol)-poly (ε-caprolactone)-poly (trimethylene carbonate) micelles.
    Yang X; Cao D; Wang N; Sun L; Li L; Nie S; Wu Q; Liu X; Yi C; Gong C
    J Pharm Sci; 2014 Jan; 103(1):305-13. PubMed ID: 24282070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overexpression of follistatin in human myoblasts increases their proliferation and differentiation, and improves the graft success in SCID mice.
    Benabdallah BF; Bouchentouf M; Rousseau J; Tremblay JP
    Cell Transplant; 2009; 18(7):709-18. PubMed ID: 19520047
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Encapsulation of osteoblast seeded microcarriers into injectable, photopolymerizable three-dimensional scaffolds based on d,l-lactide and epsilon-caprolactone.
    Declercq HA; Gorski TL; Tielens SP; Schacht EH; Cornelissen MJ
    Biomacromolecules; 2005; 6(3):1608-14. PubMed ID: 15877384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acrylate end-capped poly(ester-carbonate) and poly(ether-ester)s for polymer-on-multielectrode array devices: synthesis, photocuring, and biocompatibility.
    Henry GR; Heise A; Bottai D; Formenti A; Gorio A; Di Giulio AM; Koning CE
    Biomacromolecules; 2008 Mar; 9(3):867-78. PubMed ID: 18257527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure.
    Wang PY; Yu HT; Tsai WB
    Biotechnol Bioeng; 2010 Jun; 106(2):285-94. PubMed ID: 20148416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization and degradation of elastomeric four-armed star copolymers based on caprolactone and L-lactide.
    Kong JF; Lipik V; Abadie MJ; Roshan Deen G; Venkatraman SS
    J Biomed Mater Res A; 2012 Dec; 100(12):3436-45. PubMed ID: 22807099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preclinical biological and physicochemical evaluation of two-photon engineered 3D biomimetic copolymer scaffolds for bone healing.
    Kampleitner C; Changi K; Felfel RM; Scotchford CA; Sottile V; Kluger R; Hoffmann O; Grant DM; Epstein MM
    Biomater Sci; 2020 Mar; 8(6):1683-1694. PubMed ID: 31984995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel GFP reporter mouse reveals Mustn1 expression in adult regenerating skeletal muscle, activated satellite cells and differentiating myoblasts.
    Krause MP; Moradi J; Coleman SK; D'Souza DM; Liu C; Kronenberg MS; Rowe DW; Hawke TJ; Hadjiargyrou M
    Acta Physiol (Oxf); 2013 Jun; 208(2):180-90. PubMed ID: 23506283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural characterization of a lipase-catalyzed copolymerization of epsilon-caprolactone and D,L-lactide.
    Wahlberg J; Persson PV; Olsson T; Hedenström E; Iversen T
    Biomacromolecules; 2003; 4(4):1068-71. PubMed ID: 12857093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein bonding on biodegradable poly(L-lactide-co-caprolactone) membrane for esophageal tissue engineering.
    Zhu Y; Chian KS; Chan-Park MB; Mhaisalkar PS; Ratner BD
    Biomaterials; 2006 Jan; 27(1):68-78. PubMed ID: 16005962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth and differentiation of bone marrow stromal cells on biodegradable polymer scaffolds: an in vitro study.
    Xue Y; Dånmark S; Xing Z; Arvidson K; Albertsson AC; Hellem S; Finne-Wistrand A; Mustafa K
    J Biomed Mater Res A; 2010 Dec; 95(4):1244-51. PubMed ID: 20939051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo.
    Cai X; Yang F; Yan X; Yang W; Yu N; Oortgiesen DA; Wang Y; Jansen JA; Walboomers XF
    J Clin Periodontol; 2015 Apr; 42(4):380-9. PubMed ID: 25692209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling the switching temperature of biodegradable, amorphous, shape-memory poly(rac-lactide)urethane networks by incorporation of different comonomers.
    Lendlein A; Zotzmann J; Feng Y; Alteheld A; Kelch S
    Biomacromolecules; 2009 Apr; 10(4):975-82. PubMed ID: 19253975
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography.
    Melchels FP; Bertoldi K; Gabbrielli R; Velders AH; Feijen J; Grijpma DW
    Biomaterials; 2010 Sep; 31(27):6909-16. PubMed ID: 20579724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation.
    Ku SH; Lee SH; Park CB
    Biomaterials; 2012 Sep; 33(26):6098-104. PubMed ID: 22681977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis, characterization and in vitro degradation of a biodegradable elastomer.
    Younes HM; Bravo-Grimaldo E; Amsden BG
    Biomaterials; 2004 Oct; 25(22):5261-9. PubMed ID: 15110477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconstruction of ablated rat rectus abdominis by muscle regeneration.
    Vindigni V; Mazzoleni F; Rossini K; Fabbian M; Zanin ME; Bassetto F; Carraro U
    Plast Reconstr Surg; 2004 Nov; 114(6):1509-15; discussion 1516-8. PubMed ID: 15509940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.