These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 2314392)
41. Metabolism of [p-18O]-phenacetin: the mechanism of activation of phenacetin to reactive metabolites in hamsters. Hinson JA; Nelson SD; Gillette JR Mol Pharmacol; 1979 Mar; 15(2):419-27. PubMed ID: 470935 [No Abstract] [Full Text] [Related]
42. Monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 enzymes. Hrycay EG; Bandiera SM Adv Exp Med Biol; 2015; 851():1-61. PubMed ID: 26002730 [TBL] [Abstract][Full Text] [Related]
43. Comparative metabolic studies of phenacetin and structurally-related compounds in the rat. Smith GE; Griffiths LA Xenobiotica; 1976 Apr; 6(4):217-36. PubMed ID: 936643 [TBL] [Abstract][Full Text] [Related]
44. Fate of free radicals generated during one-electron reductions of 4-alkyl-1,4-peroxyquinols by cytochrome P-450. Yumibe NP; Thompson JA Chem Res Toxicol; 1988; 1(6):385-90. PubMed ID: 2979755 [TBL] [Abstract][Full Text] [Related]
45. Roles of radical characters of pristine and nitrogen-substituted hydrographene in dioxygen bindings. Yumura T; Kobayashi H; Yamabe T J Chem Phys; 2010 Nov; 133(17):174703. PubMed ID: 21054061 [TBL] [Abstract][Full Text] [Related]
46. Oxidation of 4-substituted TEMPO derivatives reveals modifications at the 1- and 4-positions. Marshall DL; Christian ML; Gryn'ova G; Coote ML; Barker PJ; Blanksby SJ Org Biomol Chem; 2011 Jul; 9(13):4936-47. PubMed ID: 21597620 [TBL] [Abstract][Full Text] [Related]
47. Formation of chemically reactive metabolites of phenacetin and acetaminophen. Gillette JR; Nelson SD; Mulder GJ; Jollow DJ; Mitchell JR; Pohl LR; Hinson JA Adv Exp Med Biol; 1981; 136 Pt B():931-50. PubMed ID: 6953755 [No Abstract] [Full Text] [Related]
48. Cytochrome P-450-catalyzed rearrangement of a peroxyquinol derived from butylated hydroxytoluene. Involvement of radical and cationic intermediates. Wand MD; Thompson JA J Biol Chem; 1986 Oct; 261(30):14049-56. PubMed ID: 3021725 [TBL] [Abstract][Full Text] [Related]
49. Metabolic denitrosation of N-nitrosamines: mechanism and biological consequences. Appel KE; Görsdorf S; Scheper T; Spiegelhalder B; Wiessler M; Schoepke M; Engeholm C; Kramer R IARC Sci Publ; 1991; (105):351-7. PubMed ID: 1855879 [TBL] [Abstract][Full Text] [Related]
50. Radical intermediates in the cytochrome P-450-catalyzed oxidation of aliphatic hydrocarbons. Ortiz de Montellano PR; Stearns RA Drug Metab Rev; 1989; 20(2-4):183-91. PubMed ID: 2680378 [No Abstract] [Full Text] [Related]
51. Formation of reactive metabolites of phenacetin in humans and rats. Veronese ME; McLean S; D'Souza CA; Davies NW Xenobiotica; 1985 Nov; 15(11):929-40. PubMed ID: 4082633 [TBL] [Abstract][Full Text] [Related]
52. Biochemical studies on the metabolic activation of halogenated alkanes. Cheeseman KH; Albano EF; Tomasi A; Slater TF Environ Health Perspect; 1985 Dec; 64():85-101. PubMed ID: 3007102 [TBL] [Abstract][Full Text] [Related]
53. Electrochemical oxidation by square-wave potential pulses in the imitation of phenacetin to acetaminophen biotransformation. Nouri-Nigjeh E; Bischoff R; Bruins AP; Permentier HP Analyst; 2011 Dec; 136(23):5064-7. PubMed ID: 21984979 [TBL] [Abstract][Full Text] [Related]
54. Quantum chemical studies of anaerobic reductive metabolism of halothane by cytochrome P-450. Goldblum A; Loew GH Chem Biol Interact; 1980 Oct; 32(1-2):83-99. PubMed ID: 7428118 [TBL] [Abstract][Full Text] [Related]
55. Cytochrome P450cam-catalyzed oxidation of a hypersensitive radical probe. Miller VP; Fruetel JA; Ortiz de Montellano PR Arch Biochem Biophys; 1992 Nov; 298(2):697-702. PubMed ID: 1416998 [TBL] [Abstract][Full Text] [Related]
56. The metabolic N-oxidation of carcinogenic arylamines in relation to nitrogen charge density and oxidation potential. Kadlubar FF; Fu PP; Jung H; Shaikh AU; Beland FA Environ Health Perspect; 1990 Jul; 87():233-6. PubMed ID: 2269230 [TBL] [Abstract][Full Text] [Related]
57. The role of biotransformation and bioactivation in toxicity. Dekant W EXS; 2009; 99():57-86. PubMed ID: 19157058 [TBL] [Abstract][Full Text] [Related]
58. Dihydrogen catalysis: a degradation mechanism for N2-fixation intermediates. Asatryan R; Bozzelli JW; Ruckenstein E J Phys Chem A; 2012 Nov; 116(47):11618-42. PubMed ID: 23095090 [TBL] [Abstract][Full Text] [Related]
59. Understanding the degradation of electrochemically-generated reactive drug metabolites by quantitative NMR. Bussy U; Giraudeau P; Tea I; Boujtita M Talanta; 2013 Nov; 116():554-8. PubMed ID: 24148444 [TBL] [Abstract][Full Text] [Related]
60. Ab initio study of the decomposition of 2,5-dimethylfuran. Simmie JM; Metcalfe WK J Phys Chem A; 2011 Aug; 115(32):8877-88. PubMed ID: 21678967 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]