These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64. How neutral nitrogen-containing compounds are oxidized in oxidative-denitrogenation of liquid fuel with TiO Bhadra BN; Baek YS; Choi CH; Jhung SH Phys Chem Chem Phys; 2021 Apr; 23(14):8368-8374. PubMed ID: 33876001 [TBL] [Abstract][Full Text] [Related]
65. Oxidation of Acid, Base, and Amide Side-Chain Amino Acid Derivatives via Hydroxyl Radical. Uranga J; Mujika JI; Grande-Aztatzi R; Matxain JM J Phys Chem B; 2018 May; 122(19):4956-4971. PubMed ID: 29676577 [TBL] [Abstract][Full Text] [Related]
66. The use of theoretical pharmacokinetic concepts in studies of the mechanisms of formation of chemically reactive metabolites in vitro and in vivo. Gillette JR Drug Metab Rev; 1983; 14(1):9-33. PubMed ID: 6839943 [No Abstract] [Full Text] [Related]
67. Cytochrome P-450- and peroxidase-dependent activation of procarbazine and iproniazid in mammalian cells. Sinha BK Free Radic Res Commun; 1991; 15(4):189-95. PubMed ID: 1667771 [TBL] [Abstract][Full Text] [Related]
68. Detection of N-acetyl-p-benzoquinone imine produced during the hydrolysis of the model phenacetin metabolite N-(pivaloyloxy)phenacetin. Novak M; Pelecanou M; Zemis JN J Med Chem; 1986 Aug; 29(8):1424-9. PubMed ID: 3735311 [TBL] [Abstract][Full Text] [Related]
69. Cytochrome P-450 oxidations and the generation of biologically reactive intermediates. Guengerich FP; Shimada T; Bondon A; Macdonald TL Adv Exp Med Biol; 1991; 283():1-11. PubMed ID: 2068975 [No Abstract] [Full Text] [Related]
70. Kinetic evidence for multiple chemically reactive intermediates in the breakdown of phenacetin N-O-glucuronide. Hinson JA; Andrews LS; Gillette JR Pharmacology; 1979; 19(5):237-48. PubMed ID: 538078 [TBL] [Abstract][Full Text] [Related]
71. McFerrin CA; Hall RW; Dellinger B Theochem; 2009 May; 902(1-3):5-14. PubMed ID: 25540469 [TBL] [Abstract][Full Text] [Related]
72. Nucleophilic attack of α-aminoalkyl radicals on carbon-nitrogen triple bonds to construct α-amino nitriles: an experimental and computational study. Zhang C; Liu C; Shao Y; Bao X; Wan X Chemistry; 2013 Dec; 19(52):17917-25. PubMed ID: 24273090 [TBL] [Abstract][Full Text] [Related]
73. The involvement of free radicals in the mechanisms of monooxygenases. White RE Pharmacol Ther; 1991; 49(1-2):21-42. PubMed ID: 1852787 [TBL] [Abstract][Full Text] [Related]
74. Aerobic oxidation of β-isophorone catalyzed by N-hydroxyphthalimide: the key features and mechanism elucidated. Chen K; Sun Y; Wang C; Yao J; Chen Z; Li H Phys Chem Chem Phys; 2012 Sep; 14(35):12141-6. PubMed ID: 22850899 [TBL] [Abstract][Full Text] [Related]
75. Electrochemical study of 3-(N-alkylamino)thiophenes: experimental and theoretical insights into a unique mechanism of oxidative polymerization. Heth CL; Tallman DE; Rasmussen SC J Phys Chem B; 2010 Apr; 114(16):5275-82. PubMed ID: 20359205 [TBL] [Abstract][Full Text] [Related]
76. Formation of 4-ethoxy-4'-nitrosodiphenylamine in the reaction of the phenacetin metabolite 4-nitrosophenetol with glutathione. Klehr H; Eyer P; Schäfer W Biol Chem Hoppe Seyler; 1987 Aug; 368(8):895-902. PubMed ID: 3663328 [TBL] [Abstract][Full Text] [Related]
78. Electron Paramagnetic Resonance Spectroscopic Study on Nonequilibrium Reaction Pathways in the Photolysis of Solid Nitromethane (CH3NO2) and D3-Nitromethane (CD3NO2). Tsegaw YA; Sander W; Kaiser RI J Phys Chem A; 2016 Mar; 120(9):1577-87. PubMed ID: 26863093 [TBL] [Abstract][Full Text] [Related]
79. Alkenyl and Aryl Peroxides. Klussmann M Chemistry; 2018 Mar; 24(18):4480-4496. PubMed ID: 29205531 [TBL] [Abstract][Full Text] [Related]
80. Deciphering the Unconventional Reduction of C=N Bonds by Old Yellow Enzymes Using QM/MM. Sahrawat AS; Polidori N; Kroutil W; Gruber K ACS Catal; 2024 Feb; 14(3):1257-1266. PubMed ID: 38327643 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]