These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1239 related articles for article (PubMed ID: 23144122)

  • 1. Transport through graphene quantum dots.
    Güttinger J; Molitor F; Stampfer C; Schnez S; Jacobsen A; Dröscher S; Ihn T; Ensslin K
    Rep Prog Phys; 2012 Dec; 75(12):126502. PubMed ID: 23144122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin states in graphene quantum dots.
    Güttinger J; Frey T; Stampfer C; Ihn T; Ensslin K
    Phys Rev Lett; 2010 Sep; 105(11):116801. PubMed ID: 20867593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-hole crossover in graphene quantum dots.
    Güttinger J; Stampfer C; Libisch F; Frey T; Burgdörfer J; Ihn T; Ensslin K
    Phys Rev Lett; 2009 Jul; 103(4):046810. PubMed ID: 19659388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum dots and spin qubits in graphene.
    Recher P; Trauzettel B
    Nanotechnology; 2010 Jul; 21(30):302001. PubMed ID: 20603538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dirac electrons in graphene-based quantum wires and quantum dots.
    Peres NM; Rodrigues JN; Stauber T; Lopes Dos Santos JM
    J Phys Condens Matter; 2009 Aug; 21(34):344202. PubMed ID: 21715777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planar Dirac electrons in magnetic quantum dots.
    Yang N; Zhu JL
    J Phys Condens Matter; 2012 May; 24(21):215303. PubMed ID: 22543306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic properties of graphene nanostructures.
    Molitor F; Güttinger J; Stampfer C; Dröscher S; Jacobsen A; Ihn T; Ensslin K
    J Phys Condens Matter; 2011 Jun; 23(24):243201. PubMed ID: 21613728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaotic Dirac billiard in graphene quantum dots.
    Ponomarenko LA; Schedin F; Katsnelson MI; Yang R; Hill EW; Novoselov KS; Geim AK
    Science; 2008 Apr; 320(5874):356-8. PubMed ID: 18420930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental observation of the quantum Hall effect and Berry's phase in graphene.
    Zhang Y; Tan YW; Stormer HL; Kim P
    Nature; 2005 Nov; 438(7065):201-4. PubMed ID: 16281031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical pumping of a single hole spin in a quantum dot.
    Gerardot BD; Brunner D; Dalgarno PA; Ohberg P; Seidl S; Kroner M; Karrai K; Stoltz NG; Petroff PM; Warburton RJ
    Nature; 2008 Jan; 451(7177):441-4. PubMed ID: 18216849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic excited states in bilayer graphene double quantum dots.
    Volk C; Fringes S; Terrés B; Dauber J; Engels S; Trellenkamp S; Stampfer C
    Nano Lett; 2011 Sep; 11(9):3581-6. PubMed ID: 21805985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field.
    Güttinger J; Stampfer C; Frey T; Ihn T; Ensslin K
    Nanoscale Res Lett; 2011 Mar; 6(1):253. PubMed ID: 21711781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coulomb Oscillations in a Gate-Controlled Few-Layer Graphene Quantum Dot.
    Song Y; Xiong H; Jiang W; Zhang H; Xue X; Ma C; Ma Y; Sun L; Wang H; Duan L
    Nano Lett; 2016 Oct; 16(10):6245-6251. PubMed ID: 27632023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-Hole Crossover in Gate-Controlled Bilayer Graphene Quantum Dots.
    Banszerus L; Rothstein A; Fabian T; Möller S; Icking E; Trellenkamp S; Lentz F; Neumaier D; Watanabe K; Taniguchi T; Libisch F; Volk C; Stampfer C
    Nano Lett; 2020 Oct; 20(10):7709-7715. PubMed ID: 32986437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gate-Defined Electron-Hole Double Dots in Bilayer Graphene.
    Banszerus L; Frohn B; Epping A; Neumaier D; Watanabe K; Taniguchi T; Stampfer C
    Nano Lett; 2018 Aug; 18(8):4785-4790. PubMed ID: 29949375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable Valley Splitting and Bipolar Operation in Graphene Quantum Dots.
    Tong C; Garreis R; Knothe A; Eich M; Sacchi A; Watanabe K; Taniguchi T; Fal'ko V; Ihn T; Ensslin K; Kurzmann A
    Nano Lett; 2021 Jan; 21(2):1068-1073. PubMed ID: 33449702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal graphene quantum dots with well-defined structures.
    Yan X; Li B; Li LS
    Acc Chem Res; 2013 Oct; 46(10):2254-62. PubMed ID: 23150896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of coupled graphene-nanotube quantum devices.
    Engels S; Weber P; Terrés B; Dauber J; Meyer C; Volk C; Trellenkamp S; Wichmann U; Stampfer C
    Nanotechnology; 2013 Jan; 24(3):035204. PubMed ID: 23263231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crossover from 'mesoscopic' to 'universal' phase for electron transmission in quantum dots.
    Avinun-Kalish M; Heiblum M; Zarchin O; Mahalu D; Umansky V
    Nature; 2005 Jul; 436(7050):529-33. PubMed ID: 16049482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 62.