These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23144131)

  • 1. Physiological and metabolic effects of carbon monoxide oxidation in the model marine bacterioplankton Ruegeria pomeroyi DSS-3.
    Cunliffe M
    Appl Environ Microbiol; 2013 Jan; 79(2):738-40. PubMed ID: 23144131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purine catabolic pathway revealed by transcriptomics in the model marine bacterium Ruegeria pomeroyi DSS-3.
    Cunliffe M
    FEMS Microbiol Ecol; 2016 Jan; 92(1):. PubMed ID: 26613749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlating carbon monoxide oxidation with cox genes in the abundant Marine Roseobacter Clade.
    Cunliffe M
    ISME J; 2011 Apr; 5(4):685-91. PubMed ID: 21068776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orbital contributions to CO oxidation in Mo-Cu carbon monoxide dehydrogenase.
    Stein BW; Kirk ML
    Chem Commun (Camb); 2014 Feb; 50(9):1104-6. PubMed ID: 24322538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of carbon monoxide oxidation by the carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum: kinetic characterization of the intermediates.
    Seravalli J; Kumar M; Lu WP; Ragsdale SW
    Biochemistry; 1997 Sep; 36(37):11241-51. PubMed ID: 9287167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One Model, Two Enzymes: Activation of Hydrogen and Carbon Monoxide.
    Ogo S; Mori Y; Ando T; Matsumoto T; Yatabe T; Yoon KS; Hayashi H; Asano M
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9723-9726. PubMed ID: 28585418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple, large-scale overexpression method of deriving carbon monoxide dehydrogenase II from thermophilic bacterium Carboxydothermus hydrogenoformans.
    Inoue T; Yoshida T; Wada K; Daifuku T; Fukuyama K; Sako Y
    Biosci Biotechnol Biochem; 2011; 75(7):1392-4. PubMed ID: 21737917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode.
    Parkin A; Seravalli J; Vincent KA; Ragsdale SW; Armstrong FA
    J Am Chem Soc; 2007 Aug; 129(34):10328-9. PubMed ID: 17672466
    [No Abstract]   [Full Text] [Related]  

  • 9. Spectroscopic states of the CO oxidation/CO2 reduction active site of carbon monoxide dehydrogenase and mechanistic implications.
    Anderson ME; Lindahl PA
    Biochemistry; 1996 Jun; 35(25):8371-80. PubMed ID: 8679595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon Monoxide Dehydrogenases.
    Jeoung JH; Martins BM; Dobbek H
    Methods Mol Biol; 2019; 1876():37-54. PubMed ID: 30317473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon monoxide-driven electron transport in Clostridium thermoautotrophicum membranes.
    Hugenholtz J; Ivey DM; Ljungdahl LG
    J Bacteriol; 1987 Dec; 169(12):5845-7. PubMed ID: 3680181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ FTIR study of CO
    Lee JE; Yamaguchi A; Ooka H; Kazami T; Miyauchi M; Kitadai N; Nakamura R
    Chem Commun (Camb); 2021 Apr; 57(26):3267-3270. PubMed ID: 33650585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of CO to structural models of the bimetallic subunit at the A-cluster of acetyl coenzyme A synthase/CO dehydrogenase.
    Harrop TC; Olmstead MM; Mascharak PK
    Chem Commun (Camb); 2004 Aug; (15):1744-5. PubMed ID: 15278165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO
    Carlson ED; Papoutsakis ET
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28625981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane association of the carbon monoxide oxidation system in Rhodopseudomonas gelatinosa.
    Wakim BT; Uffen RL
    J Bacteriol; 1983 Jan; 153(1):571-3. PubMed ID: 6687360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of CO dehydrogenase with the cytoplasmic membrane monitored by fluorescence correlation spectroscopy.
    Spreitler F; Brock C; Pelzmann A; Meyer O; Köhler J
    Chembiochem; 2010 Nov; 11(17):2419-23. PubMed ID: 20979125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival.
    Cordero PRF; Bayly K; Man Leung P; Huang C; Islam ZF; Schittenhelm RB; King GM; Greening C
    ISME J; 2019 Nov; 13(11):2868-2881. PubMed ID: 31358912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly selective electrocatalytic conversion of CO2 to CO at -0.57 V (NHE) by carbon monoxide dehydrogenase from Moorella thermoacetica.
    Shin W; Lee SH; Shin JW; Lee SP; Kim Y
    J Am Chem Soc; 2003 Dec; 125(48):14688-9. PubMed ID: 14640627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of carbon monoxide by bacteria.
    Kim YM; Hegeman GD
    Int Rev Cytol; 1983; 81():1-32. PubMed ID: 6409833
    [No Abstract]   [Full Text] [Related]  

  • 20. Carbon monoxide dehydrogenase from Rhodospirillum rubrum produces formate.
    Heo J; Skjeldal L; Staples CR; Ludden PW
    J Biol Inorg Chem; 2002 Sep; 7(7-8):810-4. PubMed ID: 12203017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.