These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 23144141)
41. Two proteolytic modules are involved in regulated intramembrane proteolysis of Bacillus subtilis RsiW. Heinrich J; Hein K; Wiegert T Mol Microbiol; 2009 Dec; 74(6):1412-26. PubMed ID: 19889088 [TBL] [Abstract][Full Text] [Related]
42. Adaptation of Bacillus subtilis carbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multi-omics perspective. Kohlstedt M; Sappa PK; Meyer H; Maaß S; Zaprasis A; Hoffmann T; Becker J; Steil L; Hecker M; van Dijl JM; Lalk M; Mäder U; Stülke J; Bremer E; Völker U; Wittmann C Environ Microbiol; 2014 Jun; 16(6):1898-917. PubMed ID: 24571712 [TBL] [Abstract][Full Text] [Related]
43. The ftsH gene of Bacillus subtilis is transiently induced after osmotic and temperature upshift. Deuerling E; Paeslack B; Schumann W J Bacteriol; 1995 Jul; 177(14):4105-12. PubMed ID: 7608085 [TBL] [Abstract][Full Text] [Related]
44. SppI Forms a Membrane Protein Complex with SppA and Inhibits Its Protease Activity in Bacillus subtilis. Henriques G; McGovern S; Neef J; Antelo-Varela M; Götz F; Otto A; Becher D; van Dijl JM; Jules M; Delumeau O mSphere; 2020 Oct; 5(5):. PubMed ID: 33028682 [TBL] [Abstract][Full Text] [Related]
45. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Kempf B; Bremer E Arch Microbiol; 1998 Oct; 170(5):319-30. PubMed ID: 9818351 [TBL] [Abstract][Full Text] [Related]
47. Functional overexpression and in vitro re-association of OpuA, an osmotically regulated ABC-transport complex from Bacillus subtilis. Horn C; Bremer E; Schmitt L FEBS Lett; 2005 Oct; 579(25):5765-8. PubMed ID: 16225868 [TBL] [Abstract][Full Text] [Related]
48. Molecular determinants for substrate specificity of the ligand-binding protein OpuAC from Bacillus subtilis for the compatible solutes glycine betaine and proline betaine. Horn C; Sohn-Bösser L; Breed J; Welte W; Schmitt L; Bremer E J Mol Biol; 2006 Mar; 357(2):592-606. PubMed ID: 16445940 [TBL] [Abstract][Full Text] [Related]
49. The compatible-solute-binding protein OpuAC from Bacillus subtilis: ligand binding, site-directed mutagenesis, and crystallographic studies. Smits SH; Höing M; Lecher J; Jebbar M; Schmitt L; Bremer E J Bacteriol; 2008 Aug; 190(16):5663-71. PubMed ID: 18567662 [TBL] [Abstract][Full Text] [Related]
50. OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. Kempf B; Bremer E J Biol Chem; 1995 Jul; 270(28):16701-13. PubMed ID: 7622480 [TBL] [Abstract][Full Text] [Related]
51. Enhanced L-lactic acid production in Lactobacillus paracasei by exogenous proline addition based on comparative metabolite profiling analysis. Tian X; Wang Y; Chu J; Zhuang Y; Zhang S Appl Microbiol Biotechnol; 2016 Mar; 100(5):2301-10. PubMed ID: 26658821 [TBL] [Abstract][Full Text] [Related]
52. Activity of the osmotically regulated yqiHIK promoter from Bacillus subtilis is controlled at a distance. Fischer KE; Bremer E J Bacteriol; 2012 Oct; 194(19):5197-208. PubMed ID: 22843846 [TBL] [Abstract][Full Text] [Related]
53. Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges. Schroeter R; Hoffmann T; Voigt B; Meyer H; Bleisteiner M; Muntel J; Jürgen B; Albrecht D; Becher D; Lalk M; Evers S; Bongaerts J; Maurer KH; Putzer H; Hecker M; Schweder T; Bremer E PLoS One; 2013; 8(11):e80956. PubMed ID: 24348917 [TBL] [Abstract][Full Text] [Related]
54. Thioxo amino acid pyrrolidides and thiazolidides: new inhibitors of proline specific peptidases. Stöckel-Maschek A; Mrestani-Klaus C; Stiebitz B; Demuth H; Neubert K Biochim Biophys Acta; 2000 Jun; 1479(1-2):15-31. PubMed ID: 11004527 [TBL] [Abstract][Full Text] [Related]
55. Human proline specific peptidases: A comprehensive analysis. Dunaevsky YE; Tereshchenkova VF; Oppert B; Belozersky MA; Filippova IY; Elpidina EN Biochim Biophys Acta Gen Subj; 2020 Sep; 1864(9):129636. PubMed ID: 32433934 [TBL] [Abstract][Full Text] [Related]
56. Independence of proline chemotaxis and transport in Bacillus subtilis. Ordal GW; Villani DP; Nicholas RA; Hamel FG J Biol Chem; 1978 Jul; 253(14):4916-9. PubMed ID: 97283 [TBL] [Abstract][Full Text] [Related]
57. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells. O'Hara MB; Hageman JH J Bacteriol; 1990 Aug; 172(8):4161-70. PubMed ID: 2115863 [TBL] [Abstract][Full Text] [Related]
58. Ectoine and hydroxyectoine as protectants against osmotic and cold stress: uptake through the SigB-controlled betaine-choline- carnitine transporter-type carrier EctT from Virgibacillus pantothenticus. Kuhlmann AU; Hoffmann T; Bursy J; Jebbar M; Bremer E J Bacteriol; 2011 Sep; 193(18):4699-708. PubMed ID: 21764932 [TBL] [Abstract][Full Text] [Related]
59. Genetic evidence for role of DPP IV in intestinal hydrolysis and assimilation of prolyl peptides. Tiruppathi C; Miyamoto Y; Ganapathy V; Leibach FH Am J Physiol; 1993 Jul; 265(1 Pt 1):G81-9. PubMed ID: 8101699 [TBL] [Abstract][Full Text] [Related]
60. Osmotically regulated transport of proline by Lactobacillus acidophilus IFO 3532. Jewell JB; Kashket ER Appl Environ Microbiol; 1991 Oct; 57(10):2829-33. PubMed ID: 1786048 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]