These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23144598)

  • 1. Site-Specific Fragment Identification Guided by Single-Step Free Energy Perturbation Calculations.
    Raman EP; Vanommeslaeghe K; Mackerell AD
    J Chem Theory Comput; 2012 Oct; 8(10):3513-3525. PubMed ID: 23144598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of relative free energies of binding using pre-computed ensembles based on the single-step free energy perturbation and the site-identification by Ligand competitive saturation approaches.
    Raman EP; Lakkaraju SK; Denny RA; MacKerell AD
    J Comput Chem; 2017 Jun; 38(15):1238-1251. PubMed ID: 27782307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproducing crystal binding modes of ligand functional groups using Site-Identification by Ligand Competitive Saturation (SILCS) simulations.
    Raman EP; Yu W; Guvench O; Mackerell AD
    J Chem Inf Model; 2011 Apr; 51(4):877-96. PubMed ID: 21456594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach.
    Raman EP; Yu W; Lakkaraju SK; MacKerell AD
    J Chem Inf Model; 2013 Dec; 53(12):3384-98. PubMed ID: 24245913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots).
    MacKerell AD; Jo S; Lakkaraju SK; Lind C; Yu W
    Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129519. PubMed ID: 31911242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization and Evaluation of Site-Identification by Ligand Competitive Saturation (SILCS) as a Tool for Target-Based Ligand Optimization.
    Ustach VD; Lakkaraju SK; Jo S; Yu W; Jiang W; MacKerell AD
    J Chem Inf Model; 2019 Jun; 59(6):3018-3035. PubMed ID: 31034213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site Identification by Ligand Competitive Saturation (SILCS) simulations for fragment-based drug design.
    Faller CE; Raman EP; MacKerell AD; Guvench O
    Methods Mol Biol; 2015; 1289():75-87. PubMed ID: 25709034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules.
    Yu W; Lakkaraju SK; Raman EP; Fang L; MacKerell AD
    J Chem Inf Model; 2015 Feb; 55(2):407-20. PubMed ID: 25622696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fragment-based binding site identification by ligand competitive saturation.
    Guvench O; MacKerell AD
    PLoS Comput Biol; 2009 Jul; 5(7):e1000435. PubMed ID: 19593374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and accurate estimation of protein-ligand relative binding affinities using site-identification by ligand competitive saturation.
    Goel H; Hazel A; Ustach VD; Jo S; Yu W; MacKerell AD
    Chem Sci; 2021 Jul; 12(25):8844-8858. PubMed ID: 34257885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-Identification by Ligand Competitive Saturation (SILCS) assisted pharmacophore modeling.
    Yu W; Lakkaraju SK; Raman EP; MacKerell AD
    J Comput Aided Mol Des; 2014 May; 28(5):491-507. PubMed ID: 24610239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SILCS-RNA: Toward a Structure-Based Drug Design Approach for Targeting RNAs with Small Molecules.
    Kognole AA; Hazel A; MacKerell AD
    J Chem Theory Comput; 2022 Sep; 18(9):5672-5691. PubMed ID: 35913731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced ligand sampling for relative protein-ligand binding free energy calculations.
    Kaus JW; McCammon JA
    J Phys Chem B; 2015 May; 119(20):6190-7. PubMed ID: 25906170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidation of Nonadditive Effects in Protein-Ligand Binding Energies: Thrombin as a Case Study.
    Calabrò G; Woods CJ; Powlesland F; Mey AS; Mulholland AJ; Michel J
    J Phys Chem B; 2016 Jun; 120(24):5340-50. PubMed ID: 27248478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate Binding Free Energy Predictions in Fragment Optimization.
    Steinbrecher TB; Dahlgren M; Cappel D; Lin T; Wang L; Krilov G; Abel R; Friesner R; Sherman W
    J Chem Inf Model; 2015 Nov; 55(11):2411-20. PubMed ID: 26457994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Accurate Binding Modes Using Combination of Classical and Accelerated Molecular Dynamics and Free-Energy Perturbation Calculations: An Application to Toxicity Studies.
    Fratev F; Steinbrecher T; Jónsdóttir SÓ
    ACS Omega; 2018 Apr; 3(4):4357-4371. PubMed ID: 31458661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated Covalent Drug Design Workflow Using Site Identification by Ligand Competitive Saturation.
    Yu W; Weber DJ; MacKerell AD
    J Chem Theory Comput; 2023 May; 19(10):3007-3021. PubMed ID: 37115781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fragment-based computation of binding free energies by systematic sampling.
    Clark M; Meshkat S; Talbot GT; Carnevali P; Wiseman JS
    J Chem Inf Model; 2009 Aug; 49(8):1901-13. PubMed ID: 19610599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.
    Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L
    J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.