BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 23144625)

  • 1. Microhomology directs diverse DNA break repair pathways and chromosomal translocations.
    Villarreal DD; Lee K; Deem A; Shim EY; Malkova A; Lee SE
    PLoS Genet; 2012; 8(11):e1003026. PubMed ID: 23144625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosomal translocations caused by either pol32-dependent or pol32-independent triparental break-induced replication.
    Ruiz JF; Gómez-González B; Aguilera A
    Mol Cell Biol; 2009 Oct; 29(20):5441-54. PubMed ID: 19651902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microhomology-mediated end joining induces hypermutagenesis at breakpoint junctions.
    Sinha S; Li F; Villarreal D; Shim JH; Yoon S; Myung K; Shim EY; Lee SE
    PLoS Genet; 2017 Apr; 13(4):e1006714. PubMed ID: 28419093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast pol4 promotes tel1-regulated chromosomal translocations.
    Ruiz JF; Pardo B; Sastre-Moreno G; Aguilera A; Blanco L
    PLoS Genet; 2013; 9(7):e1003656. PubMed ID: 23874240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microhomology Selection for Microhomology Mediated End Joining in
    Lee K; Ji JH; Yoon K; Che J; Seol JH; Lee SE; Shim EY
    Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 30965655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements.
    VanHulle K; Lemoine FJ; Narayanan V; Downing B; Hull K; McCullough C; Bellinger M; Lobachev K; Petes TD; Malkova A
    Mol Cell Biol; 2007 Apr; 27(7):2601-14. PubMed ID: 17242181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome rearrangements via template switching between diverged repeated sequences.
    Anand RP; Tsaponina O; Greenwell PW; Lee CS; Du W; Petes TD; Haber JE
    Genes Dev; 2014 Nov; 28(21):2394-406. PubMed ID: 25367035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms.
    Payen C; Koszul R; Dujon B; Fischer G
    PLoS Genet; 2008 Sep; 4(9):e1000175. PubMed ID: 18773114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risky business: Microhomology-mediated end joining.
    Sinha S; Villarreal D; Shim EY; Lee SE
    Mutat Res; 2016 Jun; 788():17-24. PubMed ID: 26790771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitation and analysis of the formation of HO-endonuclease stimulated chromosomal translocations by single-strand annealing in Saccharomyces cerevisiae.
    Liddell L; Manthey G; Pannunzio N; Bailis A
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21968396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assays for DNA double-strand break repair by microhomology-based end-joining repair mechanisms.
    Kostyrko K; Mermod N
    Nucleic Acids Res; 2016 Apr; 44(6):e56. PubMed ID: 26657630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homology and enzymatic requirements of microhomology-dependent alternative end joining.
    Sharma S; Javadekar SM; Pandey M; Srivastava M; Kumari R; Raghavan SC
    Cell Death Dis; 2015 Mar; 6(3):e1697. PubMed ID: 25789972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bridge-induced chromosome translocation in yeast relies upon a Rad54/Rdh54-dependent, Pol32-independent pathway.
    Tosato V; Sidari S; Bruschi CV
    PLoS One; 2013; 8(4):e60926. PubMed ID: 23613757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-homologous end joining often uses microhomology: implications for alternative end joining.
    Pannunzio NR; Li S; Watanabe G; Lieber MR
    DNA Repair (Amst); 2014 May; 17():74-80. PubMed ID: 24613510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells.
    Sankaranarayanan K; Taleei R; Rahmanian S; Nikjoo H
    Mutat Res; 2013; 753(2):114-130. PubMed ID: 23948232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination.
    Decottignies A
    Genetics; 2007 Jul; 176(3):1403-15. PubMed ID: 17483423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RAD59 is required for efficient repair of simultaneous double-strand breaks resulting in translocations in Saccharomyces cerevisiae.
    Pannunzio NR; Manthey GM; Bailis AM
    DNA Repair (Amst); 2008 May; 7(5):788-800. PubMed ID: 18373960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resection and repair of a Cas9 double-strand break at CTG trinucleotide repeats induces local and extensive chromosomal deletions.
    Mosbach V; Viterbo D; Descorps-Declère S; Poggi L; Vaysse-Zinkhöfer W; Richard GF
    PLoS Genet; 2020 Jul; 16(7):e1008924. PubMed ID: 32673314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex chromosomal rearrangements mediated by break-induced replication involve structure-selective endonucleases.
    Pardo B; Aguilera A
    PLoS Genet; 2012 Sep; 8(9):e1002979. PubMed ID: 23071463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.