These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23144695)

  • 1. Assessing predictors of changes in protein stability upon mutation using self-consistency.
    Thiltgen G; Goldstein RA
    PLoS One; 2012; 7(10):e46084. PubMed ID: 23144695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details.
    Potapov V; Cohen M; Schreiber G
    Protein Eng Des Sel; 2009 Sep; 22(9):553-60. PubMed ID: 19561092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the performance of computational predictors for estimating protein stability changes upon missense mutations.
    Iqbal S; Li F; Akutsu T; Ascher DB; Webb GI; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34058752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of protein stability predictors.
    Khan S; Vihinen M
    Hum Mutat; 2010 Jun; 31(6):675-84. PubMed ID: 20232415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the stability of mutant proteins by computational approaches: an overview.
    Marabotti A; Scafuri B; Facchiano A
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32496523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. INPS: predicting the impact of non-synonymous variations on protein stability from sequence.
    Fariselli P; Martelli PL; Savojardo C; Casadio R
    Bioinformatics; 2015 Sep; 31(17):2816-21. PubMed ID: 25957347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic evaluation of computational tools to predict the effects of mutations on protein stability in the absence of experimental structures.
    Pan Q; Nguyen TB; Ascher DB; Pires DEV
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of Web tools for predicting changes in protein stability caused by mutations.
    Marabotti A; Del Prete E; Scafuri B; Facchiano A
    BMC Bioinformatics; 2021 Jul; 22(Suppl 7):345. PubMed ID: 34225665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0.
    Dehouck Y; Grosfils A; Folch B; Gilis D; Bogaerts P; Rooman M
    Bioinformatics; 2009 Oct; 25(19):2537-43. PubMed ID: 19654118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational tools help improve protein stability but with a solubility tradeoff.
    Broom A; Jacobi Z; Trainor K; Meiering EM
    J Biol Chem; 2017 Sep; 292(35):14349-14361. PubMed ID: 28710274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting changes in protein stability caused by mutation using sequence-and structure-based methods in a CAGI5 blind challenge.
    Strokach A; Corbi-Verge C; Kim PM
    Hum Mutat; 2019 Sep; 40(9):1414-1423. PubMed ID: 31243847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing computational tools for predicting protein stability changes upon missense mutations using a new dataset.
    Zheng F; Liu Y; Yang Y; Wen Y; Li M
    Protein Sci; 2024 Jan; 33(1):e4861. PubMed ID: 38084013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlating protein function and stability through the analysis of single amino acid substitutions.
    Bromberg Y; Rost B
    BMC Bioinformatics; 2009 Aug; 10 Suppl 8(Suppl 8):S8. PubMed ID: 19758472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of Normal Mode Analysis Methods in Computational Protein Design.
    Frappier V; Chartier M; Najmanovich R
    Methods Mol Biol; 2017; 1529():203-214. PubMed ID: 27914052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the Effect of Amino Acid Single-Point Mutations on Protein Stability-Large-Scale Validation of MD-Based Relative Free Energy Calculations.
    Steinbrecher T; Zhu C; Wang L; Abel R; Negron C; Pearlman D; Feyfant E; Duan J; Sherman W
    J Mol Biol; 2017 Apr; 429(7):948-963. PubMed ID: 27964946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring Protein Supersecondary Structure Through Changes in Protein Folding, Stability, and Flexibility.
    Pires DEV; Rodrigues CHM; Albanaz ATS; Karmakar M; Myung Y; Xavier J; Michanetzi EM; Portelli S; Ascher DB
    Methods Mol Biol; 2019; 1958():173-185. PubMed ID: 30945219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting protein thermal stability changes upon point mutations using statistical potentials: Introducing HoTMuSiC.
    Pucci F; Bourgeas R; Rooman M
    Sci Rep; 2016 Mar; 6():23257. PubMed ID: 26988870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the Effect of Mutations on Protein Folding and Protein-Protein Interactions.
    Strokach A; Corbi-Verge C; Teyra J; Kim PM
    Methods Mol Biol; 2019; 1851():1-17. PubMed ID: 30298389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis and prediction of protein folding energy changes upon mutation by element specific persistent homology.
    Cang Z; Wei GW
    Bioinformatics; 2017 Nov; 33(22):3549-3557. PubMed ID: 29036440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using structural bioinformatics to investigate the impact of non synonymous SNPs and disease mutations: scope and limitations.
    Reumers J; Schymkowitz J; Rousseau F
    BMC Bioinformatics; 2009 Aug; 10 Suppl 8(Suppl 8):S9. PubMed ID: 19758473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.