These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 23144980)
1. Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity. Guo S; Garnham CP; Whitney JC; Graham LA; Davies PL PLoS One; 2012; 7(11):e48805. PubMed ID: 23144980 [TBL] [Abstract][Full Text] [Related]
2. Role of Ca²⁺ in folding the tandem β-sandwich extender domains of a bacterial ice-binding adhesin. Guo S; Garnham CP; Karunan Partha S; Campbell RL; Allingham JS; Davies PL FEBS J; 2013 Nov; 280(22):5919-32. PubMed ID: 24024640 [TBL] [Abstract][Full Text] [Related]
3. Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice. Vance TD; Olijve LL; Campbell RL; Voets IK; Davies PL; Guo S Biosci Rep; 2014 Jul; 34(4):. PubMed ID: 24892750 [TBL] [Abstract][Full Text] [Related]
4. Structure of a 1.5-MDa adhesin that binds its Antarctic bacterium to diatoms and ice. Guo S; Stevens CA; Vance TDR; Olijve LLC; Graham LA; Campbell RL; Yazdi SR; Escobedo C; Bar-Dolev M; Yashunsky V; Braslavsky I; Langelaan DN; Smith SP; Allingham JS; Voets IK; Davies PL Sci Adv; 2017 Aug; 3(8):e1701440. PubMed ID: 28808685 [TBL] [Abstract][Full Text] [Related]
5. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold. Garnham CP; Gilbert JA; Hartman CP; Campbell RL; Laybourn-Parry J; Davies PL Biochem J; 2008 Apr; 411(1):171-80. PubMed ID: 18095937 [TBL] [Abstract][Full Text] [Related]
6. Complete genome sequence of Marinomonas arctica BSI20414, a giant antifreeze protein-producing bacterium isolated from Arctic sea ice. Liao L; Gao S; Xu Y; Su S; Wen J; Yu Y; Chen B Mar Genomics; 2021 Jun; 57():100829. PubMed ID: 33867119 [TBL] [Abstract][Full Text] [Related]
7. Conserved structural features anchor biofilm-associated RTX-adhesins to the outer membrane of bacteria. Guo S; Langelaan DN; Phippen SW; Smith SP; Voets IK; Davies PL FEBS J; 2018 May; 285(10):1812-1826. PubMed ID: 29575515 [TBL] [Abstract][Full Text] [Related]
8. Exploring the Effects of Subfreezing Temperature and Salt Concentration on Ice Growth Inhibition of Antarctic Gram-Negative Bacterium Marinomonas Primoryensis Using Coarse-Grained Simulation. Nguyen H; Dac Van T; Tran N; Le L Appl Biochem Biotechnol; 2016 Apr; 178(8):1534-45. PubMed ID: 26758589 [TBL] [Abstract][Full Text] [Related]
9. Structure and application of antifreeze proteins from Antarctic bacteria. Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139 [TBL] [Abstract][Full Text] [Related]
10. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370 [TBL] [Abstract][Full Text] [Related]
11. Putting life on ice: bacteria that bind to frozen water. Bar Dolev M; Bernheim R; Guo S; Davies PL; Braslavsky I J R Soc Interface; 2016 Aug; 13(121):. PubMed ID: 27534698 [TBL] [Abstract][Full Text] [Related]
12. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics. Drori R; Celik Y; Davies PL; Braslavsky I J R Soc Interface; 2014 Sep; 11(98):20140526. PubMed ID: 25008081 [TBL] [Abstract][Full Text] [Related]
13. Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Muryoi N; Sato M; Kaneko S; Kawahara H; Obata H; Yaish MW; Griffith M; Glick BR J Bacteriol; 2004 Sep; 186(17):5661-71. PubMed ID: 15317770 [TBL] [Abstract][Full Text] [Related]
14. LabVIEW-operated novel nanoliter osmometer for ice binding protein investigations. Braslavsky I; Drori R J Vis Exp; 2013 Feb; (72):e4189. PubMed ID: 23407403 [TBL] [Abstract][Full Text] [Related]
15. A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. Gilbert JA; Davies PL; Laybourn-Parry J FEMS Microbiol Lett; 2005 Apr; 245(1):67-72. PubMed ID: 15796981 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic Insights into the Folding Mechanism of Region V in Ice-Binding Protein Secreted by Wang H; Miao X; Zhai C; Chen Y; Lin Z; Zhou X; Guo M; Chai Z; Wang R; Shen W; Li H; Hu C Langmuir; 2023 Nov; 39(45):16128-16137. PubMed ID: 37916685 [TBL] [Abstract][Full Text] [Related]
17. An ice-binding and tandem beta-sandwich domain-containing protein in Shewanella frigidimarina is a potential new type of ice adhesin. Vance TDR; Graham LA; Davies PL FEBS J; 2018 Apr; 285(8):1511-1527. PubMed ID: 29498209 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of antifreeze proteins from the antarctic marine microalga Pyramimonas gelidicola. Jung W; Gwak Y; Davies PL; Kim HJ; Jin E Mar Biotechnol (NY); 2014 Oct; 16(5):502-12. PubMed ID: 24609978 [TBL] [Abstract][Full Text] [Related]
19. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity. Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764 [TBL] [Abstract][Full Text] [Related]
20. Ice-Nucleating and Antifreeze Proteins Recognize Ice through a Diversity of Anchored Clathrate and Ice-like Motifs. Hudait A; Odendahl N; Qiu Y; Paesani F; Molinero V J Am Chem Soc; 2018 Apr; 140(14):4905-4912. PubMed ID: 29564892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]