These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23145016)

  • 21. The most efficient metazoan swimmer creates a 'virtual wall' to enhance performance.
    Gemmell BJ; Du Clos KT; Colin SP; Sutherland KR; Costello JH
    Proc Biol Sci; 2021 Jan; 288(1942):20202494. PubMed ID: 33402068
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensitivity analysis of kinematic approximations in dynamic medusan swimming models.
    Dabiri JO; Gharib M
    J Exp Biol; 2003 Oct; 206(Pt 20):3675-80. PubMed ID: 12966059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Propulsion in cubomedusae: mechanisms and utility.
    Colin SP; Costello JH; Katija K; Seymour J; Kiefer K
    PLoS One; 2013; 8(2):e56393. PubMed ID: 23437122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of vortex rings for manoeuvrability.
    Gemmell BJ; Troolin DR; Costello JH; Colin SP; Satterlie RA
    J R Soc Interface; 2015 Jul; 12(108):20150389. PubMed ID: 26136226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ontogenetic changes in the bell morphology and kinematics and swimming behavior of rowing medusae: the special case of the limnomedusa Liriope tetraphylla.
    Blough T; Colin SP; Costello JH; Marques AC
    Biol Bull; 2011 Feb; 220(1):6-14. PubMed ID: 21385952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LM-Jelly: Liquid Metal Enabled Biomimetic Robotic Jellyfish.
    Ye J; Yao YC; Gao JY; Chen S; Zhang P; Sheng L; Liu J
    Soft Robot; 2022 Dec; 9(6):1098-1107. PubMed ID: 35486839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrodynamics of Vortex Generation during Bell Contraction by the Hydromedusa
    Costello JH; Colin SP; Gemmell BJ; Dabiri JO
    Biomimetics (Basel); 2019 Jul; 4(3):. PubMed ID: 31284395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish.
    Herschlag G; Miller L
    J Theor Biol; 2011 Sep; 285(1):84-95. PubMed ID: 21669208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer.
    Peng J; Alben S
    Bioinspir Biomim; 2012 Mar; 7(1):016012. PubMed ID: 22345408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of anguilliform locomotion in fishes studied using simple three-dimensional physical models.
    Lim JL; Lauder GV
    Bioinspir Biomim; 2016 Jul; 11(4):046006. PubMed ID: 27378052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A numerical study of the benefits of driving jellyfish bells at their natural frequency.
    Hoover A; Miller L
    J Theor Biol; 2015 Jun; 374():13-25. PubMed ID: 25823642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry.
    Babu MN; Mallikarjuna JM; Krishnankutty P
    Robotics Biomim; 2016; 3():3. PubMed ID: 27077022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-propelled swimming of a flexible plunging foil near a solid wall.
    Dai L; He G; Zhang X
    Bioinspir Biomim; 2016 Jul; 11(4):046005. PubMed ID: 27377880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring the sensitivity in jellyfish locomotion under variations in scale, frequency, and duty cycle.
    Miles JG; Battista NA
    J Math Biol; 2021 Nov; 83(5):56. PubMed ID: 34731319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wake structures behind a swimming robotic lamprey with a passively flexible tail.
    Leftwich MC; Tytell ED; Cohen AH; Smits AJ
    J Exp Biol; 2012 Feb; 215(Pt 3):416-25. PubMed ID: 22246250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thrust force characterization of free-swimming soft robotic jellyfish.
    Frame J; Lopez N; Curet O; Engeberg ED
    Bioinspir Biomim; 2018 Sep; 13(6):064001. PubMed ID: 30226216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional morphology and fluid interactions during early development of the scyphomedusa Aurelia aurita.
    Feitl KE; Millett AF; Colin SP; Dabiri JO; Costello JH
    Biol Bull; 2009 Dec; 217(3):283-91. PubMed ID: 20040752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From single neurons to behavior in the jellyfish
    Pallasdies F; Goedeke S; Braun W; Memmesheimer RM
    Elife; 2019 Dec; 8():. PubMed ID: 31868586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a bio-inspired transformable robotic fin.
    Yang Y; Xia Y; Qin F; Xu M; Li W; Zhang S
    Bioinspir Biomim; 2016 Aug; 11(5):056010. PubMed ID: 27580003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.