These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23145038)

  • 1. Titanium dioxide nanoparticles increase sensitivity in the next generation of the water flea Daphnia magna.
    Bundschuh M; Seitz F; Rosenfeldt RR; Schulz R
    PLoS One; 2012; 7(11):e48956. PubMed ID: 23145038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute and chronic response of Daphnia magna exposed to TiO2 nanoparticles in agitation system.
    Kim KT; Klaine SJ; Kim SD
    Bull Environ Contam Toxicol; 2014 Oct; 93(4):456-60. PubMed ID: 24845425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term effects of nanoscaled titanium dioxide on the cladoceran Daphnia magna over six generations.
    Jacobasch C; Völker C; Giebner S; Völker J; Alsenz H; Potouridis T; Heidenreich H; Kayser G; Oehlmann J; Oetken M
    Environ Pollut; 2014 Mar; 186():180-6. PubMed ID: 24378815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna.
    Das P; Xenopoulos MA; Metcalfe CD
    Bull Environ Contam Toxicol; 2013 Jul; 91(1):76-82. PubMed ID: 23708262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute toxicity of nanosized TiO(2) to Daphnia magna under UVA irradiation.
    Amiano I; Olabarrieta J; Vitorica J; Zorita S
    Environ Toxicol Chem; 2012 Nov; 31(11):2564-6. PubMed ID: 22887344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does the exposure mode to ENPs influence their toxicity to aquatic species? A case study with TiO2 nanoparticles and Daphnia magna.
    Salieri B; Pasteris A; Baumann J; Righi S; Köser J; D'Amato R; Mazzesi B; Filser J
    Environ Sci Pollut Res Int; 2015 Apr; 22(7):5050-8. PubMed ID: 25567056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna.
    Wiench K; Wohlleben W; Hisgen V; Radke K; Salinas E; Zok S; Landsiedel R
    Chemosphere; 2009 Sep; 76(10):1356-65. PubMed ID: 19580988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of chronic toxicity of the crystalline forms of TiO
    Liu S; Zeng P; Li X; Thuyet DQ; Fan W
    Ecotoxicol Environ Saf; 2019 Oct; 181():292-300. PubMed ID: 31201961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles.
    Tan C; Wang WX
    Environ Pollut; 2014 Mar; 186():36-42. PubMed ID: 24361562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna.
    Zhu X; Chang Y; Chen Y
    Chemosphere; 2010 Jan; 78(3):209-15. PubMed ID: 19963236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle toxicity in Daphnia magna reproduction studies: the importance of test design.
    Seitz F; Bundschuh M; Rosenfeldt RR; Schulz R
    Aquat Toxicol; 2013 Jan; 126():163-8. PubMed ID: 23202250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in Daphnia magna.
    Dabrunz A; Duester L; Prasse C; Seitz F; Rosenfeldt R; Schilde C; Schaumann GE; Schulz R
    PLoS One; 2011; 6(5):e20112. PubMed ID: 21647422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantity and quality of natural organic matter influence the ecotoxicity of titanium dioxide nanoparticles.
    Seitz F; Rosenfeldt RR; Müller M; Lüderwald S; Schulz R; Bundschuh M
    Nanotoxicology; 2016 Dec; 10(10):1415-1421. PubMed ID: 27499241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress responses of Daphnia magna exposed to TiO(2) nanoparticles according to size fraction.
    Kim KT; Klaine SJ; Cho J; Kim SH; Kim SD
    Sci Total Environ; 2010 Apr; 408(10):2268-72. PubMed ID: 20153877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna.
    Hartmann NB; Legros S; Von der Kammer F; Hofmann T; Baun A
    Aquat Toxicol; 2012 Aug; 118-119():1-8. PubMed ID: 22494961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phototoxicity of TiO2 nanoparticles under solar radiation to two aquatic species: Daphnia magna and Japanese medaka.
    Ma H; Brennan A; Diamond SA
    Environ Toxicol Chem; 2012 Jul; 31(7):1621-9. PubMed ID: 22544710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna.
    Cupi D; Hartmann NB; Baun A
    Environ Toxicol Chem; 2015 Mar; 34(3):497-506. PubMed ID: 25546145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation analysis of single- and multigenerational endpoints in Daphnia magna toxicity tests: A case-study using TiO
    Nederstigt TAP; Peijnenburg WJGM; Blom R; Vijver MG
    Ecotoxicol Environ Saf; 2022 Aug; 241():113792. PubMed ID: 35738106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Daphnia magna for Nanoecotoxicity Study.
    Xu Z; Liu Y; Wang Y
    Methods Mol Biol; 2019; 1894():345-352. PubMed ID: 30547472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential assessment via daphnia and zebrafish for systematic toxicity screening of heterogeneous substances.
    Jang GH; Park CB; Kang BJ; Kim YJ; Lee KH
    Environ Pollut; 2016 Sep; 216():292-303. PubMed ID: 27288628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.