BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23145118)

  • 1. Processing of Chlamydia abortus polymorphic membrane protein 18D during the chlamydial developmental cycle.
    Wheelhouse NM; Sait M; Aitchison K; Livingstone M; Wright F; McLean K; Inglis NF; Smith DG; Longbottom D
    PLoS One; 2012; 7(11):e49190. PubMed ID: 23145118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of pmpD expression and PmpD post-translational processing during the life cycle of Chlamydia trachomatis serovars A, D, and L2.
    Kiselev AO; Skinner MC; Lampe MF
    PLoS One; 2009; 4(4):e5191. PubMed ID: 19367336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression, processing, and localization of PmpD of Chlamydia trachomatis Serovar L2 during the chlamydial developmental cycle.
    Kiselev AO; Stamm WE; Yates JR; Lampe MF
    PLoS One; 2007 Jun; 2(6):e568. PubMed ID: 17593967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlamydia trachomatis polymorphic membrane protein D is a virulence factor involved in early host-cell interactions.
    Kari L; Southern TR; Downey CJ; Watkins HS; Randall LB; Taylor LD; Sturdevant GL; Whitmire WM; Caldwell HD
    Infect Immun; 2014 Jul; 82(7):2756-62. PubMed ID: 24733093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydial polymorphic membrane proteins: regulation, function and potential vaccine candidates.
    Vasilevsky S; Stojanov M; Greub G; Baud D
    Virulence; 2016; 7(1):11-22. PubMed ID: 26580416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression patterns of five polymorphic membrane proteins during the Chlamydia abortus developmental cycle.
    Wheelhouse N; Sait M; Wilson K; Aitchison K; McLean K; Smith DG; Longbottom D
    Vet Microbiol; 2012 Dec; 160(3-4):525-9. PubMed ID: 22776512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Number, Organization, and Size of Polymorphic Membrane Protein Coding Sequences as well as the Most Conserved Pmp Protein Differ within and across Chlamydia Species.
    Van Lent S; Creasy HH; Myers GS; Vanrompay D
    J Mol Microbiol Biotechnol; 2016; 26(5):333-44. PubMed ID: 27463616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydia trachomatis polymorphic membrane protein D is an oligomeric autotransporter with a higher-order structure.
    Swanson KA; Taylor LD; Frank SD; Sturdevant GL; Fischer ER; Carlson JH; Whitmire WM; Caldwell HD
    Infect Immun; 2009 Jan; 77(1):508-16. PubMed ID: 19001072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational analysis of the polymorphic membrane protein superfamily of Chlamydia trachomatis and Chlamydia pneumoniae.
    Grimwood J; Stephens RS
    Microb Comp Genomics; 1999; 4(3):187-201. PubMed ID: 10587946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Chlamydia psittaci genome: a comparative analysis of intracellular pathogens.
    Voigt A; Schöfl G; Saluz HP
    PLoS One; 2012; 7(4):e35097. PubMed ID: 22506068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Chlamydia trachomatis PmpD adhesin forms higher order structures through disulphide-mediated covalent interactions.
    Paes W; Dowle A; Coldwell J; Leech A; Ganderton T; Brzozowski A
    PLoS One; 2018; 13(6):e0198662. PubMed ID: 29912892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The molecular biology and diagnostics of Chlamydia trachomatis.
    Birkelund S
    Dan Med Bull; 1992 Aug; 39(4):304-20. PubMed ID: 1526183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From the inside out--processing of the Chlamydial autotransporter PmpD and its role in bacterial adhesion and activation of human host cells.
    Wehrl W; Brinkmann V; Jungblut PR; Meyer TF; Szczepek AJ
    Mol Microbiol; 2004 Jan; 51(2):319-34. PubMed ID: 14756775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane.
    Bannantine JP; Griffiths RS; Viratyosin W; Brown WJ; Rockey DD
    Cell Microbiol; 2000 Feb; 2(1):35-47. PubMed ID: 11207561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical Role for the Extended N Terminus of Chlamydial MreB in Directing Its Membrane Association and Potential Interaction with Divisome Proteins.
    Lee J; Cox JV; Ouellette SP
    J Bacteriol; 2020 Apr; 202(9):. PubMed ID: 32041796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variable expression of surface-exposed polymorphic membrane proteins in in vitro-grown Chlamydia trachomatis.
    Tan C; Hsia RC; Shou H; Carrasco JA; Rank RG; Bavoil PM
    Cell Microbiol; 2010 Feb; 12(2):174-87. PubMed ID: 19811502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of two novel proteins in Chlamydia trachomatis during natural infection.
    Myers GS; Grinvalds R; Booth S; Hutton SI; Binks M; Kemp DJ; Sriprakash KS
    Microb Pathog; 2000 Aug; 29(2):63-72. PubMed ID: 10906261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression Level of the
    Arif ED; Saeed NM; Rachid SK; Dyary HO; Rashid PMA
    Pol J Microbiol; 2022 Mar; 71(1):115-121. PubMed ID: 35635174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and evaluation of a combination of chlamydial antigens to support the diagnosis of severe and invasive Chlamydia trachomatis infections.
    Forsbach-Birk V; Simnacher U; Pfrepper KI; Soutschek E; Kiselev AO; Lampe MF; Meyer T; Straube E; Essig A
    Clin Microbiol Infect; 2010 Aug; 16(8):1237-44. PubMed ID: 19723133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.