BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 23145136)

  • 1. Natural variation in seed very long chain fatty acid content is controlled by a new isoform of KCS18 in Arabidopsis thaliana.
    Jasinski S; Lécureuil A; Miquel M; Loudet O; Raffaele S; Froissard M; Guerche P
    PLoS One; 2012; 7(11):e49261. PubMed ID: 23145136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural variation in acyl editing is a determinant of seed storage oil composition.
    Menard GN; Bryant FM; Kelly AA; Craddock CP; Lavagi I; Hassani-Pak K; Kurup S; Eastmond PJ
    Sci Rep; 2018 Nov; 8(1):17346. PubMed ID: 30478395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis 3-ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids.
    Kim J; Jung JH; Lee SB; Go YS; Kim HJ; Cahoon R; Markham JE; Cahoon EB; Suh MC
    Plant Physiol; 2013 Jun; 162(2):567-80. PubMed ID: 23585652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional analysis of β-ketoacyl-CoA synthase from biofuel feedstock Thlaspi arvense reveals differences in the triacylglycerol biosynthetic pathway among Brassicaceae.
    Claver A; de la Vega M; Rey-Giménez R; Luján MÁ; Picorel R; López MV; Alfonso M
    Plant Mol Biol; 2020 Oct; 104(3):283-296. PubMed ID: 32740897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ACYL-ACYL CARRIER PROTEIN DESATURASE2 and 3 Are Responsible for Making Omega-7 Fatty Acids in the Arabidopsis Aleurone.
    Bryant FM; Munoz-Azcarate O; Kelly AA; Beaudoin F; Kurup S; Eastmond PJ
    Plant Physiol; 2016 Sep; 172(1):154-62. PubMed ID: 27462083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural variation for seed oil composition in Arabidopsis thaliana.
    O'Neill CM; Gill S; Hobbs D; Morgan C; Bancroft I
    Phytochemistry; 2003 Nov; 64(6):1077-90. PubMed ID: 14568074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic control of storage oil synthesis in seeds of Arabidopsis.
    Hobbs DH; Flintham JE; Hills MJ
    Plant Physiol; 2004 Oct; 136(2):3341-9. PubMed ID: 15466222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of the Arabidopsis beta-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase.
    Beaudoin F; Wu X; Li F; Haslam RP; Markham JE; Zheng H; Napier JA; Kunst L
    Plant Physiol; 2009 Jul; 150(3):1174-91. PubMed ID: 19439572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and developmental function of the 3-ketoacyl-ACP synthase2 gene in Arabidopsis thaliana.
    Hakozaki H; Park JI; Endo M; Takada Y; Kazama T; Takeda Y; Suzuki G; Kawagishi-Kobayashi M; Watanabe M
    Genes Genet Syst; 2008 Apr; 83(2):143-52. PubMed ID: 18506098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants.
    Lassner MW; Lardizabal K; Metz JG
    Plant Cell; 1996 Feb; 8(2):281-92. PubMed ID: 8742713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetracosanoic acids produced by 3-ketoacyl-CoA synthase 17 are required for synthesizing seed coat suberin in Arabidopsis.
    Kim RJ; Han S; Kim HJ; Hur JH; Suh MC
    J Exp Bot; 2024 Mar; 75(6):1767-1780. PubMed ID: 37769208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Cuphea beta-ketoacyl-ACP synthase shifts the synthesis of fatty acids towards shorter chains in Arabidopsis seeds expressing Cuphea FatB thioesterases.
    Leonard JM; Knapp SJ; Slabaugh MB
    Plant J; 1998 Mar; 13(5):621-8. PubMed ID: 9681004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The natural genetic variation of the fatty-acyl composition of seed oils in different ecotypes of Arabidopsis thaliana.
    Millar AA; Kunst L
    Phytochemistry; 1999 Nov; 52(6):1029-33. PubMed ID: 10643668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two high linolenic mutants of Arabidopsis thaliana contain megabase-scale genome duplications encompassing the FAD3 locus.
    O'Neill CM; Baker D; Bennett G; Clarke J; Bancroft I
    Plant J; 2011 Dec; 68(5):912-8. PubMed ID: 21848868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analysis of branched-chain amino acid levels in Arabidopsis seeds.
    Angelovici R; Lipka AE; Deason N; Gonzalez-Jorge S; Lin H; Cepela J; Buell R; Gore MA; Dellapenna D
    Plant Cell; 2013 Dec; 25(12):4827-43. PubMed ID: 24368787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative trait loci involved in regulating seed oil composition in Arabidopsis thaliana and their evolutionary implications.
    Sanyal A; Randal Linder C
    Theor Appl Genet; 2012 Mar; 124(4):723-38. PubMed ID: 22072101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases.
    Blacklock BJ; Jaworski JG
    Biochem Biophys Res Commun; 2006 Jul; 346(2):583-90. PubMed ID: 16765910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of Arabidopsis ACYL-COENZYME A DESATURASE-LIKE2 (At2g31360) in the biosynthesis of the very-long-chain monounsaturated fatty acid components of membrane lipids.
    Smith MA; Dauk M; Ramadan H; Yang H; Seamons LE; Haslam RP; Beaudoin F; Ramirez-Erosa I; Forseille L
    Plant Physiol; 2013 Jan; 161(1):81-96. PubMed ID: 23175755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A β-Ketoacyl-CoA Synthase Is Involved in Rice Leaf Cuticular Wax Synthesis and Requires a CER2-LIKE Protein as a Cofactor.
    Wang X; Guan Y; Zhang D; Dong X; Tian L; Qu LQ
    Plant Physiol; 2017 Feb; 173(2):944-955. PubMed ID: 27913740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Escherichia coli FAB system using synthetic plant genes for the production of long chain fatty acids.
    Kassab E; Fuchs M; Haack M; Mehlmer N; Brueck TB
    Microb Cell Fact; 2019 Oct; 18(1):163. PubMed ID: 31581944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.