These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 231455)
81. Effect of saturated phosphatidylcholines on the functional properties of reconstituted cytochrome oxidase. Singer MA; Dinda M; Young M; Finegold L Biochem Cell Biol; 1986 Feb; 64(2):91-8. PubMed ID: 3013244 [TBL] [Abstract][Full Text] [Related]
82. Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane. Cohen FS; Akabas MH; Finkelstein A Science; 1982 Jul; 217(4558):458-60. PubMed ID: 6283637 [TBL] [Abstract][Full Text] [Related]
83. Membrane fusion-inhibiting peptides do not inhibit influenza virus fusion or the Ca(2+)-induced fusion of negatively charged vesicles. Stegmann T J Biol Chem; 1993 Dec; 268(36):26886-92. PubMed ID: 8262922 [TBL] [Abstract][Full Text] [Related]
84. Interaction of drugs with a model membrane protein. Effect of dibucaine on cytochrome oxidase proteoliposomes. Singer MA Biochem Pharmacol; 1982 Feb; 31(4):527-34. PubMed ID: 6279107 [TBL] [Abstract][Full Text] [Related]
85. Fusion of Sindbis virus with model membranes containing phosphatidylethanolamine: implications for protein-induced membrane fusion. Scheule RK Biochim Biophys Acta; 1987 May; 899(2):185-95. PubMed ID: 3580364 [TBL] [Abstract][Full Text] [Related]
86. Membrane fusion due to dehydration by polyethylene glycol, dextran, or sucrose. MacDonald RI Biochemistry; 1985 Jul; 24(15):4058-66. PubMed ID: 2413883 [TBL] [Abstract][Full Text] [Related]
88. Interaction of a cyclic peptide, Ro09-0198, with phosphatidylethanolamine in liposomal membranes. Choung SY; Kobayashi T; Takemoto K; Ishitsuka H; Inoue K Biochim Biophys Acta; 1988 May; 940(2):180-7. PubMed ID: 2835978 [TBL] [Abstract][Full Text] [Related]
89. Calcium-dependent association of 33 kDa protein in polymorphonuclear leukocytes with phospholipid liposomes containing phosphatidylserine or cardiolipin. Utsumi K; Sato E; Okimasu E; Miyahara M; Takahashi R FEBS Lett; 1986 Jun; 201(2):277-81. PubMed ID: 3086127 [TBL] [Abstract][Full Text] [Related]
90. Cytochrome c oxidase in proteoliposomes visualised by platinum-carbon and by tungsten-tantalum shadowing: image analysis. Tihova M; Tattrie B; Nicholls P Biochem Biophys Res Commun; 1994 Aug; 203(1):331-7. PubMed ID: 8074675 [TBL] [Abstract][Full Text] [Related]
91. Curvature and composition-dependent lipid asymmetry in phosphatidylcholine vesicles containing phosphatidylethanolamine and gangliosides. Thomas PD; Poznansky MJ Biochim Biophys Acta; 1989 Jan; 978(1):85-90. PubMed ID: 2914133 [TBL] [Abstract][Full Text] [Related]
92. Quantization of membrane potential generation by cytochrome c oxidase in small vesicles. Wrigglesworth JM J Inorg Biochem; 1985; 23(3-4):311-6. PubMed ID: 2991471 [TBL] [Abstract][Full Text] [Related]
93. Detergent-free Ultrafast Reconstitution of Membrane Proteins into Lipid Bilayers Using Fusogenic Complementary-charged Proteoliposomes. Galkin MA; Russell AN; Vik SB; Berry RM; Ishmukhametov RR J Vis Exp; 2018 Apr; (134):. PubMed ID: 29683454 [TBL] [Abstract][Full Text] [Related]
94. Probe and protein orientations in proteoliposomes: electron microscopy and topobiochemistry. Nicholls P; Tattrie B; Butko P; Tihova M Biochem Soc Trans; 1992 May; 20(2):115S. PubMed ID: 1327894 [No Abstract] [Full Text] [Related]