These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23145574)

  • 61. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures.
    Wee TL; Sherman BD; Gust D; Moore AL; Moore TA; Liu Y; Scaiano JC
    J Am Chem Soc; 2011 Oct; 133(42):16742-5. PubMed ID: 21942296
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Electronic structure description of a [Co(III)3Co(IV)O4] cluster: a model for the paramagnetic intermediate in cobalt-catalyzed water oxidation.
    McAlpin JG; Stich TA; Ohlin CA; Surendranath Y; Nocera DG; Casey WH; Britt RD
    J Am Chem Soc; 2011 Oct; 133(39):15444-52. PubMed ID: 21913664
    [TBL] [Abstract][Full Text] [Related]  

  • 64. High-spin cobalt(II) ions in square planar coordination: structures and magnetism of the oxysulfides Sr2CoO2Cu2S2 and Ba2CoO2Cu2S2 and their solid solution.
    Smura CF; Parker DR; Zbiri M; Johnson MR; Gál ZA; Clarke SJ
    J Am Chem Soc; 2011 Mar; 133(8):2691-705. PubMed ID: 21302927
    [TBL] [Abstract][Full Text] [Related]  

  • 65. In situ X-ray absorption analysis of ∼1.8 nm dendrimer-encapsulated Pt nanoparticles during electrochemical CO oxidation.
    Weir MG; Myers VS; Frenkel AI; Crooks RM
    Chemphyschem; 2010 Sep; 11(13):2942-50. PubMed ID: 20715278
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts.
    Arenz M; Mayrhofer KJ; Stamenkovic V; Blizanac BB; Tomoyuki T; Ross PN; Markovic NM
    J Am Chem Soc; 2005 May; 127(18):6819-29. PubMed ID: 15869305
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An oxygen evolution Co-Ac catalyst--the synergistic effect of phosphate ions.
    Irshad A; Munichandraiah N
    Phys Chem Chem Phys; 2014 Mar; 16(11):5412-22. PubMed ID: 24504009
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fischer-Tropsch synthesis: study of the promotion of Pt on the reduction property of Co/Al2O3 catalysts by in situ EXAFS of Co K and Pt LIII edges and XPS.
    Jacobs G; Chaney JA; Patterson PM; Das TK; Maillot JC; Davis BH
    J Synchrotron Radiat; 2004 Sep; 11(Pt 5):414-22. PubMed ID: 15310958
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Identifying Key Structural Features of IrO
    Willinger E; Massué C; Schlögl R; Willinger MG
    J Am Chem Soc; 2017 Aug; 139(34):12093-12101. PubMed ID: 28793758
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Coupling CP-MD simulations and X-ray absorption spectroscopy: exploring the structure of oxaliplatin in aqueous solution.
    Beret EC; Provost K; Müller D; Marcos ES
    J Phys Chem B; 2009 Sep; 113(36):12343-52. PubMed ID: 19685899
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Rates of water exchange for two cobalt(II) heteropolyoxotungstate compounds in aqueous solution.
    Ohlin CA; Harley SJ; McAlpin JG; Hocking RK; Mercado BQ; Johnson RL; Villa EM; Fidler MK; Olmstead MM; Spiccia L; Britt RD; Casey WH
    Chemistry; 2011 Apr; 17(16):4408-17. PubMed ID: 21416515
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH.
    Surendranath Y; Kanan MW; Nocera DG
    J Am Chem Soc; 2010 Nov; 132(46):16501-9. PubMed ID: 20977209
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Zinc adsorption on clays inferred from atomistic simulations and EXAFS spectroscopy.
    Churakov SV; Dähn R
    Environ Sci Technol; 2012 Jun; 46(11):5713-9. PubMed ID: 22536748
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Visible-light-driven water oxidation with nanoscale Co(3)O(4) : new optimization strategies.
    Liu H; Patzke GR
    Chem Asian J; 2014 Aug; 9(8):2249-59. PubMed ID: 24692244
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts.
    Surendranath Y; Dinca M; Nocera DG
    J Am Chem Soc; 2009 Feb; 131(7):2615-20. PubMed ID: 19183057
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction.
    Bauer JC; Mullins D; Li M; Wu Z; Payzant EA; Overbury SH; Dai S
    Phys Chem Chem Phys; 2011 Feb; 13(7):2571-81. PubMed ID: 21246124
    [TBL] [Abstract][Full Text] [Related]  

  • 77. CoO
    Guan J; Ding C; Chen R; Huang B; Zhang X; Fan F; Zhang F; Li C
    Chem Sci; 2017 Sep; 8(9):6111-6116. PubMed ID: 28989640
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cobalt and manganese diphosphonates with one-, two-, and three-dimensional structures and field-induced magnetic transitions.
    Cao DK; Liu MJ; Huang J; Bao SS; Zheng LM
    Inorg Chem; 2011 Mar; 50(6):2278-87. PubMed ID: 21322588
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mechanistic Aspects of Cobalt-Oxo Cubane Clusters in Oxidation Chemistry.
    Amtawong J; Nguyen AI; Tilley TD
    J Am Chem Soc; 2022 Feb; 144(4):1475-1492. PubMed ID: 35060704
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels.
    Morris AJ; Meyer GJ; Fujita E
    Acc Chem Res; 2009 Dec; 42(12):1983-94. PubMed ID: 19928829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.