These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23145616)

  • 1. Analysis of the cochlear microphonic to a low-frequency tone embedded in filtered noise.
    Chertoff ME; Earl BR; Diaz FJ; Sorensen JL
    J Acoust Soc Am; 2012 Nov; 132(5):3351-62. PubMed ID: 23145616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing a cochlear transducer function from the summating potential using a low-frequency bias tone.
    Choi CH; Chertoff ME; Bian L; Lerner D
    J Acoust Soc Am; 2004 Nov; 116(5):2996-3007. PubMed ID: 15603145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):177-88. PubMed ID: 2737964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the location of missing outer hair cells using the electrical signal recorded at the round window.
    Chertoff ME; Earl BR; Diaz FJ; Sorensen JL; Thomas ML; Kamerer AM; Peppi M
    J Acoust Soc Am; 2014 Sep; 136(3):1212. PubMed ID: 25190395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential use of low-frequency tones to locate regions of outer hair cell loss.
    Kamerer AM; Diaz FJ; Peppi M; Chertoff ME
    Hear Res; 2016 Dec; 342():39-47. PubMed ID: 27677389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using a concha electrode to measure response patterns based on the amplitudes of cochlear microphonic waveforms across acoustic frequencies in normal-hearing subjects.
    Zhang M
    Ear Hear; 2015 Jan; 36(1):53-60. PubMed ID: 25083598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning curves of the difference tone auditory nerve neurophonic.
    Henry KR
    Hear Res; 1996 Sep; 99(1-2):160-7. PubMed ID: 8970824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological properties of cochlear implantation in the gerbil using a flexible array.
    DeMason C; Choudhury B; Ahmad F; Fitzpatrick DC; Wang J; Buchman CA; Adunka OF
    Ear Hear; 2012; 33(4):534-42. PubMed ID: 22436408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):189-202. PubMed ID: 2737965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the intensity of masking noise on ear canal recorded low-frequency cochlear microphonic waveforms in normal hearing subjects.
    Zhang M
    Hear Res; 2014 Jul; 313():9-17. PubMed ID: 24793117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of intracochlear damage with cochlear implantation in a gerbil model of hearing loss.
    Choudhury B; Adunka OF; Demason CE; Ahmad FI; Buchman CA; Fitzpatrick DC
    Otol Neurotol; 2011 Oct; 32(8):1370-8. PubMed ID: 21921858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The group delay and suppression pattern of the cochlear microphonic potential recorded at the round window.
    He W; Porsov E; Kemp D; Nuttall AL; Ren T
    PLoS One; 2012; 7(3):e34356. PubMed ID: 22470560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distortion product emissions in humans. I. Basic properties in normally hearing subjects.
    Lonsbury-Martin BL; Harris FP; Stagner BB; Hawkins MD; Martin GK
    Ann Otol Rhinol Laryngol Suppl; 1990 May; 147():3-14. PubMed ID: 2110797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analytic approach to identifying the sources of the low-frequency round window cochlear response.
    Kamerer AM; Chertoff ME
    Hear Res; 2019 Apr; 375():53-65. PubMed ID: 30808536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some experimental observations of responses evoked from the cochlea during two-tone stimulation.
    Brown AM
    ORL J Otorhinolaryngol Relat Spec; 1986; 48(2):124-34. PubMed ID: 3703531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of cochlear responses in the guinea pig by low-frequency, phase-shifted maskers following noise trauma.
    Hoehmann D; Müller S; Dornhoffer JL
    Eur Arch Otorhinolaryngol; 1995; 252(1):S20-5. PubMed ID: 7718220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response pattern based on the amplitude of ear canal recorded cochlear microphonic waveforms across acoustic frequencies in normal hearing subjects.
    Zhang M
    Trends Amplif; 2012 Jun; 16(2):117-26. PubMed ID: 22696071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells.
    Russell IJ; Sellick PM
    J Physiol; 1983 May; 338():179-206. PubMed ID: 6875955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gerbil model of sloping sensorineural hearing loss.
    Suberman TA; Campbell AP; Adunka OF; Buchman CA; Roche JP; Fitzpatrick DC
    Otol Neurotol; 2011 Jun; 32(4):544-52. PubMed ID: 21389900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation of receptor potentials of cochlear hair cells to spike discharges of cochlear neurons.
    Weiss TF
    Annu Rev Physiol; 1984; 46():247-59. PubMed ID: 6370108
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.