These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23145616)
21. Modulation at the guinea pig round window of summating potentials and compound action potentials by low-frequency sound. Klis JF; Smoorenburg GF Hear Res; 1985; 20(1):15-23. PubMed ID: 4077742 [TBL] [Abstract][Full Text] [Related]
22. Corresponding effects of acoustic fatigue on the cochlear microphonic and the compound action potential. Pierson MG; Møller AR Hear Res; 1982 Jan; 6(1):61-82. PubMed ID: 7054136 [TBL] [Abstract][Full Text] [Related]
23. Estimating mechanical responses to pulsatile electrical stimulation of the cochlea. McAnally KI; Brown M; Clark GM Hear Res; 1997 Apr; 106(1-2):146-53. PubMed ID: 9112114 [TBL] [Abstract][Full Text] [Related]
24. Surface-recorded cochlear microphonic potentials during temporary threshold shifts in man. Pratt H; Sohmer H; Barazani N Audiology; 1978; 17(3):204-12. PubMed ID: 666656 [TBL] [Abstract][Full Text] [Related]
25. A model of the generation of the cochlear microphonic with nonlinear hair cell transduction and nonlinear basilar membrane mechanics. Patuzzi RB Hear Res; 1987; 30(1):73-82. PubMed ID: 3680056 [TBL] [Abstract][Full Text] [Related]
26. Cochlear microphonic enhancement in two tone interactions. Nuttall AL; Dolan DF Hear Res; 1991 Feb; 51(2):235-45. PubMed ID: 2032959 [TBL] [Abstract][Full Text] [Related]
27. Brief report: the cochlear microphonic as an indication of outer hair cell function. Withnell RH Ear Hear; 2001 Feb; 22(1):75-7. PubMed ID: 11271978 [TBL] [Abstract][Full Text] [Related]
28. Place-specific derived cochlear microphonics from human ears. Ponton CW; Don M; Eggermont JJ Scand Audiol; 1992; 21(3):131-41. PubMed ID: 1439498 [TBL] [Abstract][Full Text] [Related]
29. Cochlear distribution of frequency-following response initiation. A high-pass masking noise study. Yamada O; Kodera K; Hink RF; Suzuki JI Audiology; 1979; 18(5):381-7. PubMed ID: 496720 [TBL] [Abstract][Full Text] [Related]
30. Effects of acoustic trauma on the cochlear potentials. Gans DP J Acoust Soc Am; 1983 Dec; 74(6):1742-6. PubMed ID: 6655132 [TBL] [Abstract][Full Text] [Related]
31. Cochlear efferent neurones and protection against acoustic trauma: protection of outer hair cell receptor current and interanimal variability. Patuzzi RB; Thompson ML Hear Res; 1991 Jul; 54(1):45-58. PubMed ID: 1917716 [TBL] [Abstract][Full Text] [Related]
32. Hearing: travelling wave or resonance? Bell A PLoS Biol; 2004 Oct; 2(10):e337. PubMed ID: 15486577 [TBL] [Abstract][Full Text] [Related]
33. Postoperative Electrocochleography from Hybrid Cochlear Implant users: An Alternative Analysis Procedure. Kim JS; Tejani VD; Abbas PJ; Brown CJ Hear Res; 2018 Dec; 370():304-315. PubMed ID: 30393003 [TBL] [Abstract][Full Text] [Related]
34. The effects of moderate cooling on gross cochlear potentials in the gerbil: basal and apical differences. Ohlemiller KK; Siegel JH Hear Res; 1992 Nov; 63(1-2):79-89. PubMed ID: 1464578 [TBL] [Abstract][Full Text] [Related]
35. Differentiation of cochlear pathophysiology in ears damaged by salicylate or a pure tone using a nonlinear systems identification technique. Bian L; Chertoff ME J Acoust Soc Am; 1998 Oct; 104(4):2261-71. PubMed ID: 10491690 [TBL] [Abstract][Full Text] [Related]
36. Real-Time Intracochlear Electrocochleography Obtained Directly Through a Cochlear Implant. Harris MS; Riggs WJ; Koka K; Litvak LM; Malhotra P; Moberly AC; O'Connell BP; Holder J; Di Lella FA; Boccio CM; Wanna GB; Labadie RF; Adunka OF Otol Neurotol; 2017 Jul; 38(6):e107-e113. PubMed ID: 28498269 [TBL] [Abstract][Full Text] [Related]
37. Voltage responses to tones of outer hair cells in the basal turn of the guinea-pig cochlea: significance for electromotility and desensitization. Russell IJ; Kössl M Proc Biol Sci; 1992 Feb; 247(1319):97-105. PubMed ID: 1349187 [TBL] [Abstract][Full Text] [Related]
38. Ear canal acoustic and round window electrical correlates of 2f1-f2 distortion generated in the cochlea. Kemp DT; Brown AM Hear Res; 1984 Jan; 13(1):39-46. PubMed ID: 6706861 [TBL] [Abstract][Full Text] [Related]
39. Modulation of responses of spiral ganglion cells in the guinea pig cochlea by low frequency sound. Sellick PM; Patuzzi R; Johnstone BM Hear Res; 1982 Jul; 7(2):199-221. PubMed ID: 7107528 [TBL] [Abstract][Full Text] [Related]
40. Development of otoacoustic emissions in gerbil: evidence for micromechanical changes underlying development of the place code. Norton SJ; Bargones JY; Rubel EW Hear Res; 1991 Jan; 51(1):73-91. PubMed ID: 2013547 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]