BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 23145619)

  • 1. Improved perception of speech in noise and Mandarin tones with acoustic simulations of harmonic coding for cochlear implants.
    Li X; Nie K; Imennov NS; Won JH; Drennan WR; Rubinstein JT; Atlas LE
    J Acoust Soc Am; 2012 Nov; 132(5):3387-98. PubMed ID: 23145619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved perception of music with a harmonic based algorithm for cochlear implants.
    Li X; Nie K; Imennov NS; Rubinstein JT; Atlas LE
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):684-94. PubMed ID: 23613083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mandarin speech-in-noise and tone recognition using vocoder simulations of the temporal limits encoder for cochlear implants.
    Meng Q; Zheng N; Li X
    J Acoust Soc Am; 2016 Jan; 139(1):301-10. PubMed ID: 26827026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users.
    Bonnard D; Schwalje A; Gantz B; Choi I
    Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of binaural spectral resolution mismatch on Mandarin speech perception in simulated electric hearing.
    Chen F; Wong LL; Tahmina Q; Azimi B; Hu Y
    J Acoust Soc Am; 2012 Aug; 132(2):EL142-8. PubMed ID: 22894313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Results using the OPAL strategy in Mandarin speaking cochlear implant recipients.
    Vandali AE; Dawson PW; Arora K
    Int J Audiol; 2017; 56(sup2):S74-S85. PubMed ID: 27329178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Psychoacoustic and phoneme identification measures in cochlear-implant and normal-hearing listeners.
    Goldsworthy RL; Delhorne LA; Braida LD; Reed CM
    Trends Amplif; 2013 Mar; 17(1):27-44. PubMed ID: 23429419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative contributions of acoustic temporal fine structure and envelope cues for lexical tone perception in noise.
    Qi B; Mao Y; Liu J; Liu B; Xu L
    J Acoust Soc Am; 2017 May; 141(5):3022. PubMed ID: 28599529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Musician effect in cochlear implant simulated gender categorization.
    Fuller CD; Galvin JJ; Free RH; Başkent D
    J Acoust Soc Am; 2014 Mar; 135(3):EL159-65. PubMed ID: 24606310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural Representation Of Harmonic Single Sideband Encoder In Inferior Colliculus Of Guinea Pigs.
    Wang X; Xiong W; Jiang B; Peng F; Hu N; Chen C; Zhou Y; Hou W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2450-2453. PubMed ID: 30440903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lexical tone recognition in noise in normal-hearing children and prelingually deafened children with cochlear implants.
    Mao Y; Xu L
    Int J Audiol; 2017; 56(sup2):S23-S30. PubMed ID: 27564095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concurrent-vowel and tone recognitions in acoustic and simulated electric hearing.
    Luo X; Fu QJ
    J Acoust Soc Am; 2009 May; 125(5):3223-33. PubMed ID: 19425665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral density affects the intelligibility of tone-vocoded speech: Implications for cochlear implant simulations.
    Rosen S; Zhang Y; Speers K
    J Acoust Soc Am; 2015 Sep; 138(3):EL318-23. PubMed ID: 26428833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pitch strength of noise-vocoded harmonic tone complexes in normal-hearing listeners.
    Shofner WP; Campbell J
    J Acoust Soc Am; 2012 Nov; 132(5):EL398-404. PubMed ID: 23145701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of noise vocoding on speech quality perception.
    Anderson MC; Arehart KH; Kates JM
    Hear Res; 2014 Mar; 309():75-83. PubMed ID: 24333929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectro-temporal cues enhance modulation sensitivity in cochlear implant users.
    Zheng Y; Escabí M; Litovsky RY
    Hear Res; 2017 Aug; 351():45-54. PubMed ID: 28601530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined spectral and temporal enhancement to improve cochlear-implant speech perception.
    Bhattacharya A; Vandali A; Zeng FG
    J Acoust Soc Am; 2011 Nov; 130(5):2951-60. PubMed ID: 22087923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing.
    Carroll J; Tiaden S; Zeng FG
    J Acoust Soc Am; 2011 Oct; 130(4):2054-62. PubMed ID: 21973360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of low-frequency harmonics to Mandarin Chinese tone identification in quiet and six-talker babble background.
    Liu C; Azimi B; Bhandary M; Hu Y
    J Acoust Soc Am; 2014 Jan; 135(1):428-38. PubMed ID: 24437783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of spectral shifting on speech perception in noise.
    Li T; Fu QJ
    Hear Res; 2010 Dec; 270(1-2):81-8. PubMed ID: 20868733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.