These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Optimising the effect of noise reduction algorithm ClearVoice in cochlear implant users by increasing the maximum comfort levels. Dingemanse JG; Goedegebure A Int J Audiol; 2018 Mar; 57(3):230-235. PubMed ID: 29065731 [TBL] [Abstract][Full Text] [Related]
8. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users. Bonnard D; Schwalje A; Gantz B; Choi I Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380 [TBL] [Abstract][Full Text] [Related]
9. The combined effects of reverberation and noise on speech intelligibility by cochlear implant listeners. Hazrati O; Loizou PC Int J Audiol; 2012 Jun; 51(6):437-43. PubMed ID: 22356300 [TBL] [Abstract][Full Text] [Related]
10. Consonant recognition as a function of the number of stimulation channels in the Hybrid short-electrode cochlear implant. Reiss LA; Turner CW; Karsten SA; Erenberg SR; Taylor J; Gantz BJ J Acoust Soc Am; 2012 Nov; 132(5):3406-17. PubMed ID: 23145621 [TBL] [Abstract][Full Text] [Related]
11. Psychophysically based site selection coupled with dichotic stimulation improves speech recognition in noise with bilateral cochlear implants. Zhou N; Pfingst BE J Acoust Soc Am; 2012 Aug; 132(2):994-1008. PubMed ID: 22894220 [TBL] [Abstract][Full Text] [Related]
12. Single and multiple microphone noise reduction strategies in cochlear implants. Kokkinakis K; Azimi B; Hu Y; Friedland DR Trends Amplif; 2012 Jun; 16(2):102-16. PubMed ID: 22923425 [TBL] [Abstract][Full Text] [Related]
13. The relationship between binaural benefit and difference in unilateral speech recognition performance for bilateral cochlear implant users. Yoon YS; Li Y; Kang HY; Fu QJ Int J Audiol; 2011 Aug; 50(8):554-65. PubMed ID: 21696329 [TBL] [Abstract][Full Text] [Related]
14. Comparison of two channel selection criteria for noise suppression in cochlear implants. Hazrati O; Loizou PC J Acoust Soc Am; 2013 Mar; 133(3):1615-24. PubMed ID: 23464031 [TBL] [Abstract][Full Text] [Related]
15. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users. Goehring T; Bolner F; Monaghan JJ; van Dijk B; Zarowski A; Bleeck S Hear Res; 2017 Feb; 344():183-194. PubMed ID: 27913315 [TBL] [Abstract][Full Text] [Related]
16. Adjustments of the amplitude mapping function: Sensitivity of cochlear implant users and effects on subjective preference and speech recognition. Theelen-van den Hoek FL; Boymans M; van Dijk B; Dreschler WA Int J Audiol; 2016 Nov; 55(11):674-87. PubMed ID: 27447758 [TBL] [Abstract][Full Text] [Related]
17. Improving speech perception in noise with current focusing in cochlear implant users. Srinivasan AG; Padilla M; Shannon RV; Landsberger DM Hear Res; 2013 May; 299():29-36. PubMed ID: 23467170 [TBL] [Abstract][Full Text] [Related]
18. Speech perception in tones and noise via cochlear implants reveals influence of spectral resolution on temporal processing. Oxenham AJ; Kreft HA Trends Hear; 2014 Oct; 18():. PubMed ID: 25315376 [TBL] [Abstract][Full Text] [Related]
19. Optimizing the perception of soft speech and speech in noise with the Advanced Bionics cochlear implant system. Holden LK; Reeder RM; Firszt JB; Finley CC Int J Audiol; 2011 Apr; 50(4):255-69. PubMed ID: 21275500 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous suppression of noise and reverberation in cochlear implants using a ratio masking strategy. Hazrati O; Sadjadi SO; Loizou PC; Hansen JH J Acoust Soc Am; 2013 Nov; 134(5):3759-65. PubMed ID: 24180786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]