BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 23145623)

  • 1. Vibratory responses of synthetic, self-oscillating vocal fold models.
    Murray PR; Thomson SL
    J Acoust Soc Am; 2012 Nov; 132(5):3428-38. PubMed ID: 23145623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A synthetic, self-oscillating vocal fold model platform for studying augmentation injection.
    Murray PR; Thomson SL; Smith ME
    J Voice; 2014 Mar; 28(2):133-43. PubMed ID: 24476985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.
    Murray PR; Thomson SL
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22157812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of phonation onset in a two-layer vocal fold model.
    Zhang Z
    J Acoust Soc Am; 2009 Feb; 125(2):1091-102. PubMed ID: 19206884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds.
    Mendelsohn AH; Zhang Z
    J Acoust Soc Am; 2011 Nov; 130(5):2961-8. PubMed ID: 22087924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of asymmetric stiffness on the structural and aerodynamic response of synthetic vocal fold models.
    Pickup BA; Thomson SL
    J Biomech; 2009 Oct; 42(14):2219-25. PubMed ID: 19664777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material and shape optimization for multi-layered vocal fold models using transient loadings.
    Schmidt B; Leugering G; Stingl M; Hüttner B; Agaimy A; Döllinger M
    J Acoust Soc Am; 2013 Aug; 134(2):1261-70. PubMed ID: 23927124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models.
    Pickup BA; Thomson SL
    J Acoust Soc Am; 2010 Sep; 128(3):EL124-9. PubMed ID: 20815428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model.
    Zhang Z
    J Acoust Soc Am; 2014 Mar; 135(3):1480-90. PubMed ID: 24606284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric vibration in a two-layer vocal fold model with left-right stiffness asymmetry: experiment and simulation.
    Zhang Z; Luu TH
    J Acoust Soc Am; 2012 Sep; 132(3):1626-35. PubMed ID: 22978891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically conductive synthetic vocal fold replicas for voice production research.
    Syndergaard KL; Dushku S; Thomson SL
    J Acoust Soc Am; 2017 Jul; 142(1):EL63. PubMed ID: 28764459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.
    Lucero JC; Van Hirtum A; Ruty N; Cisonni J; Pelorson X
    J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraglottal velocity and pressure measurements in a hemilarynx model.
    Oren L; Gutmark E; Khosla S
    J Acoust Soc Am; 2015 Feb; 137(2):935-43. PubMed ID: 25698025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonation threshold pressure: comparison of calculations and measurements taken with physical models of the vocal fold mucosa.
    Fulcher LP; Scherer RC
    J Acoust Soc Am; 2011 Sep; 130(3):1597-605. PubMed ID: 21895097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of geometric parameters influencing the flow-induced vibration of a two-layer self-oscillating computational vocal fold model.
    Pickup BA; Thomson SL
    J Acoust Soc Am; 2011 Apr; 129(4):2121-32. PubMed ID: 21476668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics.
    Zhang Z
    J Acoust Soc Am; 2010 Apr; 127(4):2554-62. PubMed ID: 20370037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating phonation through alteration of vocal fold medial surface contour.
    Mau T; Muhlestein J; Callahan S; Chan RW
    Laryngoscope; 2012 Sep; 122(9):2005-14. PubMed ID: 22865592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2017 Oct; 142(4):2311. PubMed ID: 29092586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.