These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 23145852)

  • 1. Influence of surface oxygen on the interactions of carbon nanotubes with natural organic matter.
    Smith B; Yang J; Bitter JL; Ball WP; Fairbrother DH
    Environ Sci Technol; 2012 Dec; 46(23):12839-47. PubMed ID: 23145852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes.
    Cho HH; Huang H; Schwab K
    Langmuir; 2011 Nov; 27(21):12960-7. PubMed ID: 21913654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of humic acids on physicochemical property and Cd(II) sorption of multiwalled carbon nanotubes.
    Tian X; Li T; Yang K; Xu Y; Lu H; Lin D
    Chemosphere; 2012 Nov; 89(11):1316-22. PubMed ID: 22726423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between humic acid (HA) adsorption on and stabilizing multiwalled carbon nanotubes (MWNTs) in water: effects of HA, MWNT and solution properties.
    Lin D; Li T; Yang K; Wu F
    J Hazard Mater; 2012 Nov; 241-242():404-10. PubMed ID: 23069335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: a structure-property relationship.
    Smith B; Wepasnick K; Schrote KE; Cho HH; Ball WP; Fairbrother DH
    Langmuir; 2009 Sep; 25(17):9767-76. PubMed ID: 19583226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes.
    Sun Y; Yang S; Sheng G; Guo Z; Wang X
    J Environ Radioact; 2012 Feb; 105():40-7. PubMed ID: 22230020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-bound humic acid increased Pb²⁺ sorption on carbon nanotubes.
    Lin D; Tian X; Li T; Zhang Z; He X; Xing B
    Environ Pollut; 2012 Aug; 167():138-47. PubMed ID: 22575094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of oxidized multi-walled carbon nanotubes through silica based porous media: influences of aquatic chemistry, surface chemistry, and natural organic matter.
    Yang J; Bitter JL; Smith BA; Fairbrother DH; Ball WP
    Environ Sci Technol; 2013 Dec; 47(24):14034-43. PubMed ID: 24251816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of surface oxidation of multiwalled carbon nanotubes on the adsorption affinity and capacity of polar and nonpolar organic compounds in aqueous phase.
    Wu W; Chen W; Lin D; Yang K
    Environ Sci Technol; 2012 May; 46(10):5446-54. PubMed ID: 22524230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of synthetic organic chemicals by carbon nanotubes: Effects of background solution chemistry.
    Zhang S; Shao T; Bekaroglu SS; Karanfil T
    Water Res; 2010 Mar; 44(6):2067-74. PubMed ID: 20071001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant-Wrapped Multiwalled Carbon Nanotubes in Aquatic Systems: Surfactant Displacement in the Presence of Humic Acid.
    Chang X; Bouchard DC
    Environ Sci Technol; 2016 Sep; 50(17):9214-22. PubMed ID: 27500910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suspending multi-walled carbon nanotubes by humic acids from a peat soil.
    Zhou X; Shu L; Zhao H; Guo X; Wang X; Tao S; Xing B
    Environ Sci Technol; 2012 Apr; 46(7):3891-7. PubMed ID: 22376064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of peat humic acids to multi-walled carbon nanotubes.
    Wang X; Shu L; Wang Y; Xu B; Bai Y; Tao S; Xing B
    Environ Sci Technol; 2011 Nov; 45(21):9276-83. PubMed ID: 21928791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coating of AFM probes with aquatic humic and non-humic NOM to study their adhesion properties.
    Aubry C; Gutierrez L; Croue JP
    Water Res; 2013 Jun; 47(9):3109-19. PubMed ID: 23587263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption.
    Schierz A; Zänker H
    Environ Pollut; 2009 Apr; 157(4):1088-94. PubMed ID: 19010575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.
    Zhang S; Shao T; Karanfil T
    Water Res; 2011 Jan; 45(3):1378-86. PubMed ID: 21093009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static and dynamic removal of aquatic natural organic matter by carbon nanotubes.
    Ajmani GS; Cho HH; Abbott Chalew TE; Schwab KJ; Jacangelo JG; Huang H
    Water Res; 2014 Aug; 59():262-70. PubMed ID: 24810742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.
    Stankus DP; Lohse SE; Hutchison JE; Nason JA
    Environ Sci Technol; 2011 Apr; 45(8):3238-44. PubMed ID: 21162562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes.
    Xu D; Tan X; Chen C; Wang X
    J Hazard Mater; 2008 Jun; 154(1-3):407-16. PubMed ID: 18053642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersibility and dispersion stability of carbon nanotubes in synthetic aquatic growth media and natural freshwater.
    Glomstad B; Zindler F; Jenssen BM; Booth AM
    Chemosphere; 2018 Jun; 201():269-277. PubMed ID: 29525654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.