BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23145907)

  • 1. Ex vivo transcriptional profiling reveals a common set of genes important for the adaptation of Pseudomonas aeruginosa to chronically infected host sites.
    Bielecki P; Komor U; Bielecka A; Müsken M; Puchałka J; Pletz MW; Ballmann M; Martins dos Santos VA; Weiss S; Häussler S
    Environ Microbiol; 2013 Feb; 15(2):570-87. PubMed ID: 23145907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa.
    Scoffield J; Silo-Suh L
    Can J Microbiol; 2016 Aug; 62(8):704-10. PubMed ID: 27392247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Within-Host Evolution of the Dutch High-Prevalent Pseudomonas aeruginosa Clone ST406 during Chronic Colonization of a Patient with Cystic Fibrosis.
    van Mansfeld R; de Been M; Paganelli F; Yang L; Bonten M; Willems R
    PLoS One; 2016; 11(6):e0158106. PubMed ID: 27337151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Shear Stress on Pseudomonas aeruginosa Isolated from the Cystic Fibrosis Lung.
    Dingemans J; Monsieurs P; Yu SH; Crabbé A; Förstner KU; Malfroot A; Cornelis P; Van Houdt R
    mBio; 2016 Aug; 7(4):. PubMed ID: 27486191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small colony variants of Pseudomonas aeruginosa in chronic bacterial infection of the lung in cystic fibrosis.
    Evans TJ
    Future Microbiol; 2015; 10(2):231-9. PubMed ID: 25689535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung.
    Hogardt M; Heesemann J
    Curr Top Microbiol Immunol; 2013; 358():91-118. PubMed ID: 22311171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microenvironmental characteristics and physiology of biofilms in chronic infections of CF patients are strongly affected by the host immune response.
    Jensen PØ; Kolpen M; Kragh KN; Kühl M
    APMIS; 2017 Apr; 125(4):276-288. PubMed ID: 28407427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic adaptations of Pseudomonas aeruginosa during cystic fibrosis chronic lung infections.
    Behrends V; Ryall B; Zlosnik JE; Speert DP; Bundy JG; Williams HD
    Environ Microbiol; 2013 Feb; 15(2):398-408. PubMed ID: 22882524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ex vivo lung model to study bronchioles infected with Pseudomonas aeruginosa biofilms.
    Harrison F; Diggle SP
    Microbiology (Reading); 2016 Oct; 162(10):1755-1760. PubMed ID: 27520088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolving stealth: genetic adaptation of Pseudomonas aeruginosa during cystic fibrosis infections.
    Nguyen D; Singh PK
    Proc Natl Acad Sci U S A; 2006 May; 103(22):8305-6. PubMed ID: 16717189
    [No Abstract]   [Full Text] [Related]  

  • 11. Pseudomonas aeruginosa Leucine Aminopeptidase Influences Early Biofilm Composition and Structure via Vesicle-Associated Antibiofilm Activity.
    Esoda CN; Kuehn MJ
    mBio; 2019 Nov; 10(6):. PubMed ID: 31744920
    [No Abstract]   [Full Text] [Related]  

  • 12. Mucoid Pseudomonas aeruginosa isolates maintain the biofilm formation capacity and the gene expression profiles during the chronic lung infection of CF patients.
    Lee B; Schjerling CK; Kirkby N; Hoffmann N; Borup R; Molin S; Høiby N; Ciofu O
    APMIS; 2011 Apr; 119(4-5):263-74. PubMed ID: 21492226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection.
    Häußler S; Ziegler I; Löttel A; Götz FV; Rohde M; Wehmhöhner D; Saravanamuthu S; Tümmler B; Steinmetz I
    J Med Microbiol; 2003 Apr; 52(Pt 4):295-301. PubMed ID: 12676867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of bacterial biofilms in chronic infections.
    Bjarnsholt T
    APMIS Suppl; 2013 May; (136):1-51. PubMed ID: 23635385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudomonas aeruginosa enhances production of a non-alginate exopolysaccharide during long-term colonization of the cystic fibrosis lung.
    Huse HK; Kwon T; Zlosnik JE; Speert DP; Marcotte EM; Whiteley M
    PLoS One; 2013; 8(12):e82621. PubMed ID: 24324811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation.
    Eberl L; Tümmler B
    Int J Med Microbiol; 2004 Sep; 294(2-3):123-31. PubMed ID: 15493822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic and environmental mutagenesis drive diversification and persistence of Pseudomonas aeruginosa in chronic lung infections.
    Rodríguez-Rojas A; Oliver A; Blázquez J
    J Infect Dis; 2012 Jan; 205(1):121-7. PubMed ID: 22080096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial ecology and adaptation in cystic fibrosis airways.
    Yang L; Jelsbak L; Molin S
    Environ Microbiol; 2011 Jul; 13(7):1682-9. PubMed ID: 21429065
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Yadav MK; Chae SW; Go YY; Im GJ; Song JJ
    Front Cell Infect Microbiol; 2017; 7():125. PubMed ID: 28459043
    [No Abstract]   [Full Text] [Related]  

  • 20. Persistent infections and immunity in cystic fibrosis.
    Yu H; Head NE
    Front Biosci; 2002 Feb; 7():d442-57. PubMed ID: 11815305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.