These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 23145936)

  • 61. Nanoscale mapping of catalytic hotspots on Fe, N-modified HOPG by scanning electrochemical microscopy-atomic force microscopy.
    Kolagatla S; Subramanian P; Schechter A
    Nanoscale; 2018 Apr; 10(15):6962-6970. PubMed ID: 29610805
    [TBL] [Abstract][Full Text] [Related]  

  • 62. DNA imaged on a HOPG electrode surface by AFM with controlled potential.
    Oliveira Brett AM; Chiorcea Paquim AM
    Bioelectrochemistry; 2005 Apr; 66(1-2):117-24. PubMed ID: 15833711
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of applied potential on arylmethyl films oxidatively grafted to carbon surfaces.
    Brooksby PA; Downard AJ; Yu SS
    Langmuir; 2005 Nov; 21(24):11304-11. PubMed ID: 16285804
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Electrochemistry at chemically assembled single-wall carbon nanotube arrays.
    Diao P; Liu Z
    J Phys Chem B; 2005 Nov; 109(44):20906-13. PubMed ID: 16853710
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Time dependent wettability of graphite upon ambient exposure: the role of water adsorption.
    Amadei CA; Lai CY; Heskes D; Chiesa M
    J Chem Phys; 2014 Aug; 141(8):084709. PubMed ID: 25173032
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Orthogonal Supramolecular Polymer Formation on Highly Oriented Pyrolytic Graphite (HOPG) Surfaces Characterized by Scanning Probe Microscopy.
    Gong Y; Zhang S; Geng Y; Niu C; Yin S; Zeng Q; Li M
    Langmuir; 2015 Oct; 31(42):11525-31. PubMed ID: 26457462
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Self-organization of gold-containing hydrogen-bonded rosette assemblies on graphite surface.
    Vázquez-Campos S; Péter M; Dong M; Xu S; Xu W; Gersen H; Linderoth TR; Schönherr H; Besenbacher F; Crego-Calama M; Reinhoudt DN
    Langmuir; 2007 Sep; 23(20):10294-8. PubMed ID: 17722940
    [TBL] [Abstract][Full Text] [Related]  

  • 68. In situ electrochemical and AFM study of thalidomide-DNA interaction.
    Oliveira SC; Chiorcea-Paquim AM; Ribeiro SM; Melo AT; Vivan M; Oliveira-Brett AM
    Bioelectrochemistry; 2009 Sep; 76(1-2):201-7. PubMed ID: 19386555
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Internal and external atomic steps in graphite exhibit dramatically different physical and chemical properties.
    Lee H; Lee HB; Kwon S; Salmeron M; Park JY
    ACS Nano; 2015 Apr; 9(4):3814-9. PubMed ID: 25817095
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nucleation, aggregative growth and detachment of metal nanoparticles during electrodeposition at electrode surfaces.
    Lai SCS; Lazenby RA; Kirkman PM; Unwin PR
    Chem Sci; 2015 Feb; 6(2):1126-1138. PubMed ID: 29560200
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Morphological imaging of single methylcellulose chains and their thermoresponsive assembly on a highly oriented pyrolytic graphite surface.
    Yokota S; Ueno T; Kitaoka T; Tatsumi D; Wariishi H
    Biomacromolecules; 2007 Dec; 8(12):3848-52. PubMed ID: 18004808
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Imaging ice-like structures formed on HOPG at room temperature.
    Teschke O
    Langmuir; 2010 Nov; 26(22):16986-90. PubMed ID: 20932040
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bismuth telluride (Bi2Te3) nanowires: synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation.
    Menke EJ; Brown MA; Li Q; Hemminger JC; Penner RM
    Langmuir; 2006 Dec; 22(25):10564-74. PubMed ID: 17129031
    [TBL] [Abstract][Full Text] [Related]  

  • 74. AFM study of oxygen reduction products on HOPG in the LiPF6-DMSO electrolyte.
    Herrera SE; Tesio AY; Clarenc R; Calvo EJ
    Phys Chem Chem Phys; 2014 Jun; 16(21):9925-9. PubMed ID: 24430211
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging.
    Nellist MR; Chen Y; Mark A; Gödrich S; Stelling C; Jiang J; Poddar R; Li C; Kumar R; Papastavrou G; Retsch M; Brunschwig BS; Huang Z; Xiang C; Boettcher SW
    Nanotechnology; 2017 Mar; 28(9):095711. PubMed ID: 28139467
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Conformational changes in single carboxymethylcellulose chains on a highly oriented pyrolytic graphite surface under different salt conditions.
    Ueno T; Yokota S; Kitaoka T; Wariishi H
    Carbohydr Res; 2007 May; 342(7):954-60. PubMed ID: 17316582
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microscopic and voltammetric characterization of bioanalytical platforms based on lactate oxidase.
    Parra A; Casero E; Vázquez L; Jin J; Pariente F; Lorenzo E
    Langmuir; 2006 Jun; 22(12):5443-50. PubMed ID: 16732675
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Observation of HOPG by STM and contact AFM in various gas atmospheres under pressures up to 1.1 MPa.
    Suzuki Y; Enoki H; Akiba E
    Ultramicroscopy; 2005 Oct; 104(3-4):226-32. PubMed ID: 15936146
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Covalent Modification of Highly Ordered Pyrolytic Graphite with a Stable Organic Free Radical by Using Diazonium Chemistry.
    Seber G; Rudnev AV; Droghetti A; Rungger I; Veciana J; Mas-Torrent M; Rovira C; Crivillers N
    Chemistry; 2017 Jan; 23(6):1415-1421. PubMed ID: 27859821
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Chemical and morphological characterizations of CoNi alloy nanoparticles formed by co-evaporation onto highly oriented pyrolytic graphite.
    Zhang G; Sun S; Bostetter M; Poulin S; Sacher E
    J Colloid Interface Sci; 2010 Oct; 350(1):16-21. PubMed ID: 20650466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.