These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 23146073)
1. Regulation of mercaptopyruvate sulfurtransferase activity via intrasubunit and intersubunit redox-sensing switches. Nagahara N Antioxid Redox Signal; 2013 Nov; 19(15):1792-802. PubMed ID: 23146073 [TBL] [Abstract][Full Text] [Related]
2. Redox regulation of mammalian 3-mercaptopyruvate sulfurtransferase. Nagahara N; Nagano M; Ito T; Suzuki H Methods Enzymol; 2015; 554():229-54. PubMed ID: 25725525 [TBL] [Abstract][Full Text] [Related]
3. A novel mercaptopyruvate sulfurtransferase thioredoxin-dependent redox-sensing molecular switch: a mechanism for the maintenance of cellular redox equilibrium. Nagahara N Mini Rev Med Chem; 2008 Jun; 8(6):585-9. PubMed ID: 18537713 [TBL] [Abstract][Full Text] [Related]
4. Is novel signal transducer sulfur oxide involved in the redox cycle of persulfide at the catalytic site cysteine in a stable reaction intermediate of mercaptopyruvate sulfurtransferase? Nagahara N; Nirasawa T; Yoshii T; Niimura Y Antioxid Redox Signal; 2012 Apr; 16(8):747-53. PubMed ID: 22149235 [TBL] [Abstract][Full Text] [Related]
5. Post-translational regulation of mercaptopyruvate sulfurtransferase via a low redox potential cysteine-sulfenate in the maintenance of redox homeostasis. Nagahara N; Katayama A J Biol Chem; 2005 Oct; 280(41):34569-76. PubMed ID: 16107337 [TBL] [Abstract][Full Text] [Related]
6. Antioxidant enzyme, 3-mercaptopyruvate sulfurtransferase-knockout mice exhibit increased anxiety-like behaviors: a model for human mercaptolactate-cysteine disulfiduria. Nagahara N; Nagano M; Ito T; Shimamura K; Akimoto T; Suzuki H Sci Rep; 2013; 3():1986. PubMed ID: 23759691 [TBL] [Abstract][Full Text] [Related]
7. Thioredoxin-dependent enzymatic activation of mercaptopyruvate sulfurtransferase. An intersubunit disulfide bond serves as a redox switch for activation. Nagahara N; Yoshii T; Abe Y; Matsumura T J Biol Chem; 2007 Jan; 282(3):1561-9. PubMed ID: 17130129 [TBL] [Abstract][Full Text] [Related]
8. The mercaptopyruvate pathway in cysteine catabolism: a physiologic role and related disease of the multifunctional 3-mercaptopyruvate sulfurtransferase. Nagahara N; Sawada N Curr Med Chem; 2006; 13(10):1219-30. PubMed ID: 16719781 [TBL] [Abstract][Full Text] [Related]
9. Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. Yadav PK; Yamada K; Chiku T; Koutmos M; Banerjee R J Biol Chem; 2013 Jul; 288(27):20002-13. PubMed ID: 23698001 [TBL] [Abstract][Full Text] [Related]
10. Alternative pathway of H Nagahara N; Koike S; Nirasawa T; Kimura H; Ogasawara Y Biochem Biophys Res Commun; 2018 Feb; 496(2):648-653. PubMed ID: 29331374 [TBL] [Abstract][Full Text] [Related]
11. The mercaptopyruvate sulfurtransferase of Trichomonas vaginalis links cysteine catabolism to the production of thioredoxin persulfide. Westrop GD; Georg I; Coombs GH J Biol Chem; 2009 Nov; 284(48):33485-94. PubMed ID: 19762467 [TBL] [Abstract][Full Text] [Related]
12. Multiple role of 3-mercaptopyruvate sulfurtransferase: antioxidative function, H Nagahara N Br J Pharmacol; 2018 Feb; 175(4):577-589. PubMed ID: 29156095 [TBL] [Abstract][Full Text] [Related]
13. Intermolecular disulfide bond to modulate protein function as a redox-sensing switch. Nagahara N Amino Acids; 2011 Jun; 41(1):59-72. PubMed ID: 20177947 [TBL] [Abstract][Full Text] [Related]
14. Arabidopsis thaliana 3-mercaptopyruvate sulfurtransferases interact with and are protected by reducing systems. Moseler A; Dhalleine T; Rouhier N; Couturier J J Biol Chem; 2021; 296():100429. PubMed ID: 33609525 [TBL] [Abstract][Full Text] [Related]
15. Cytosolic mercaptopyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis. Nagahara N; Okazaki T; Nishino T J Biol Chem; 1995 Jul; 270(27):16230-5. PubMed ID: 7608189 [TBL] [Abstract][Full Text] [Related]
16. Affinity labeling of a catalytic site, cysteine(247), in rat mercaptopyruvate sulfurtransferase by chloropyruvate as an analog of a substrate. Nagahara N; Sawada N; Nakagawa T Biochimie; 2004; 86(9-10):723-9. PubMed ID: 15556283 [TBL] [Abstract][Full Text] [Related]
17. 3-Mercaptopyruvate sulfurtransferase produces potential redox regulators cysteine- and glutathione-persulfide (Cys-SSH and GSSH) together with signaling molecules H Kimura Y; Koike S; Shibuya N; Lefer D; Ogasawara Y; Kimura H Sci Rep; 2017 Sep; 7(1):10459. PubMed ID: 28874874 [TBL] [Abstract][Full Text] [Related]
18. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Módis K; Asimakopoulou A; Coletta C; Papapetropoulos A; Szabo C Biochem Biophys Res Commun; 2013 Apr; 433(4):401-7. PubMed ID: 23537657 [TBL] [Abstract][Full Text] [Related]
19. Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Mikami Y; Shibuya N; Kimura Y; Nagahara N; Ogasawara Y; Kimura H Biochem J; 2011 Nov; 439(3):479-85. PubMed ID: 21732914 [TBL] [Abstract][Full Text] [Related]
20. Role of amino acid residues in the active site of rat liver mercaptopyruvate sulfurtransferase. CDNA cloning, overexpression, and site-directed mutagenesis. Nagahara N; Nishino T J Biol Chem; 1996 Nov; 271(44):27395-401. PubMed ID: 8910318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]