These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 23146134)
1. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation. Cordente AG; Cordero-Bueso G; Pretorius IS; Curtin CD FEMS Yeast Res; 2013 Feb; 13(1):62-73. PubMed ID: 23146134 [TBL] [Abstract][Full Text] [Related]
2. Functional improvement of Saccharomyces cerevisiae to reduce volatile acidity in wine. Luo Z; Walkey CJ; Madilao LL; Measday V; Van Vuuren HJ FEMS Yeast Res; 2013 Aug; 13(5):485-94. PubMed ID: 23692528 [TBL] [Abstract][Full Text] [Related]
3. The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines. Vilela-Moura A; Schuller D; Mendes-Faia A; Silva RD; Chaves SR; Sousa MJ; Côrte-Real M Appl Microbiol Biotechnol; 2011 Jan; 89(2):271-80. PubMed ID: 20931186 [TBL] [Abstract][Full Text] [Related]
4. Use of a YAP1 overexpression cassette conferring specific resistance to cerulenin and cycloheximide as an efficient selectable marker in the yeast Saccharomyces cerevisiae. Akada R; Shimizu Y; Matsushita Y; Kawahata M; Hoshida H; Nishizawa Y Yeast; 2002 Jan; 19(1):17-28. PubMed ID: 11754479 [TBL] [Abstract][Full Text] [Related]
5. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae. Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R Microb Cell Fact; 2016 Sep; 15(1):156. PubMed ID: 27627879 [TBL] [Abstract][Full Text] [Related]
6. Upregulation of ALD3 and GPD1 in Saccharomyces cerevisiae during Icewine fermentation. Pigeau GM; Inglis DL J Appl Microbiol; 2005; 99(1):112-25. PubMed ID: 15960671 [TBL] [Abstract][Full Text] [Related]
7. Designing and creating Saccharomyces interspecific hybrids for improved, industry relevant, phenotypes. Bellon JR; Yang F; Day MP; Inglis DL; Chambers PJ Appl Microbiol Biotechnol; 2015 Oct; 99(20):8597-609. PubMed ID: 26099331 [TBL] [Abstract][Full Text] [Related]
8. Effect of refermentation conditions and micro-oxygenation on the reduction of volatile acidity by commercial S. cerevisiae strains and their impact on the aromatic profile of wines. Vilela-Moura A; Schuller D; Falco V; Mendes-Faia A; Côrte-Real M Int J Food Microbiol; 2010 Jul; 141(3):165-72. PubMed ID: 20626097 [TBL] [Abstract][Full Text] [Related]
9. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. Cordente AG; Heinrich A; Pretorius IS; Swiegers JH FEMS Yeast Res; 2009 May; 9(3):446-59. PubMed ID: 19236486 [TBL] [Abstract][Full Text] [Related]
10. The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Lilly M; Bauer FF; Lambrechts MG; Swiegers JH; Cozzolino D; Pretorius IS Yeast; 2006 Jul; 23(9):641-59. PubMed ID: 16845703 [TBL] [Abstract][Full Text] [Related]
11. Reduction of volatile acidity of wines by selected yeast strains. Vilela-Moura A; Schuller D; Mendes-Faia A; Côrte-Real M Appl Microbiol Biotechnol; 2008 Oct; 80(5):881-90. PubMed ID: 18677471 [TBL] [Abstract][Full Text] [Related]
12. Influence of Williopsis saturnus yeasts in combination with Saccharomyces cerevisiae on wine fermentation. Erten H; Tanguler H Lett Appl Microbiol; 2010 May; 50(5):474-9. PubMed ID: 20214731 [TBL] [Abstract][Full Text] [Related]
13. Osmoadaptation of wine yeast (Saccharomyces cerevisiae) during Icewine fermentation leads to high levels of acetic acid. Heit C; Martin SJ; Yang F; Inglis DL J Appl Microbiol; 2018 Jun; 124(6):1506-1520. PubMed ID: 29444384 [TBL] [Abstract][Full Text] [Related]
15. Isolation of a spontaneous cerulenin-resistant sake yeast with both high ethyl caproate-producing ability and normal checkpoint integrity. Tamura H; Okada H; Kume K; Koyano T; Goshima T; Nakamura R; Akao T; Shimoi H; Mizunuma M; Ohya Y; Hirata D Biosci Biotechnol Biochem; 2015; 79(7):1191-9. PubMed ID: 25787154 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of Zygosaccharomyces bailii BCV 08 as a co-starter in wine fermentation for the improvement of ethyl esters production. Garavaglia J; Schneider Rde C; Camargo Mendes SD; Welke JE; Zini CA; Caramão EB; Valente P Microbiol Res; 2015 Apr; 173():59-65. PubMed ID: 25801972 [TBL] [Abstract][Full Text] [Related]
17. Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene. Eglinton JM; Heinrich AJ; Pollnitz AP; Langridge P; Henschke PA; de Barros Lopes M Yeast; 2002 Mar; 19(4):295-301. PubMed ID: 11870853 [TBL] [Abstract][Full Text] [Related]
18. Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains. Marullo P; Aigle M; Bely M; Masneuf-Pomarède I; Durrens P; Dubourdieu D; Yvert G FEMS Yeast Res; 2007 Sep; 7(6):941-52. PubMed ID: 17537182 [TBL] [Abstract][Full Text] [Related]
19. YAP1 confers resistance to the fatty acid synthase inhibitor cerulenin through the transporter Flr1p in Saccharomyces cerevisiae. Oskouian B; Saba JD Mol Gen Genet; 1999 Mar; 261(2):346-53. PubMed ID: 10102370 [TBL] [Abstract][Full Text] [Related]
20. Linking gene expression and oenological traits: Comparison between Torulaspora delbrueckii and Saccharomyces cerevisiae strains. Tondini F; Lang T; Chen L; Herderich M; Jiranek V Int J Food Microbiol; 2019 Apr; 294():42-49. PubMed ID: 30763906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]