These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 23146220)

  • 1. Rapid at-line pharmaceutical cleaning verification using a novel light induced fluorescence (LIF) sensor.
    Peles DN; Ely KJ; Crowder TM; Ponstingl M
    J Pharm Biomed Anal; 2013 Jan; 72():1-7. PubMed ID: 23146220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative determination of residual active pharmaceutical ingredients and intermediates on equipment surfaces by ion mobility spectrometry.
    Qin C; Granger A; Papov V; McCaffrey J; Norwood DL
    J Pharm Biomed Anal; 2010 Jan; 51(1):107-13. PubMed ID: 19758781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative determination and sampling of azathioprine residues for cleaning validation in production area.
    Fazio TT; Singh AK; Kedor-Hackmann ER; Santoro MI
    J Pharm Biomed Anal; 2007 Mar; 43(4):1495-8. PubMed ID: 17118615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. At-line quantitative ion mobility spectrometry for direct analysis of swabs for pharmaceutical manufacturing equipment cleaning verification.
    Strege MA; Kozerski J; Juarbe N; Mahoney P
    Anal Chem; 2008 Apr; 80(8):3040-4. PubMed ID: 18333625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cleaning verification: A five parameter study of a Total Organic Carbon method development and validation for the cleaning assessment of residual detergents in manufacturing equipment.
    Li X; Ahmad IAH; Tam J; Wang Y; Dao G; Blasko A
    J Pharm Biomed Anal; 2018 Feb; 149():33-39. PubMed ID: 29100028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of LC-MS for the analysis of cleaning verification samples.
    Simmonds EL; Lough WJ; Gray MR
    J Pharm Biomed Anal; 2006 Feb; 40(3):631-8. PubMed ID: 16311001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of an alternative approach for real-time cleaning verification in the pharmaceutical industry.
    Sarwar A; McSweeney C; Smith M; Timmermans J; Moore E
    Analyst; 2020 Nov; 145(22):7429-7436. PubMed ID: 32955041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nondestructive and on-line monitoring of tablets using light-induced fluorescence technology.
    Lai CK; Zahari A; Miller B; Katstra WE; Cima MJ; Cooney CL
    AAPS PharmSciTech; 2004 Jan; 5(1):E3. PubMed ID: 15198524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Percent Relative Humidity, Moisture Content, and Compression Force on Light-Induced Fluorescence (LIF) Response as a Process Analytical Tool.
    Shah IG; Stagner WC
    AAPS PharmSciTech; 2016 Aug; 17(4):951-7. PubMed ID: 27435199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total residue analysis of swabs by ion mobility spectrometry.
    Strege MA
    Anal Chem; 2009 Jun; 81(11):4576-80. PubMed ID: 19476393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a multivariate light-induced fluorescence (LIF) PAT tool for in-line quantitative analysis of pharmaceutical granules in a V-blender.
    Guay JM; Lapointe-Garant PP; Gosselin R; Simard JS; Abatzoglou N
    Eur J Pharm Biopharm; 2014 Apr; 86(3):524-31. PubMed ID: 24373731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards the development of a rapid, portable, surface enhanced Raman spectroscopy based cleaning verification system for the drug nelarabine.
    Corrigan DK; Salton NA; Preston C; Piletsky S
    J Pharm Pharmacol; 2010 Sep; 62(9):1195-200. PubMed ID: 20796200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: A review.
    Burggraeve A; Monteyne T; Vervaet C; Remon JP; De Beer T
    Eur J Pharm Biopharm; 2013 Jan; 83(1):2-15. PubMed ID: 23041243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Process analytical technology and compensating for nonlinear effects in process spectroscopic data for improved process monitoring and control.
    Chen Z; Morris J
    Biotechnol J; 2009 May; 4(5):610-9. PubMed ID: 19452463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleaning validation: quantitative estimation of atorvastatin in production area.
    Moradiya MR; Solanki KP; Shah PA; Patel KG; Thakkar VT; Gandhi TR
    PDA J Pharm Sci Technol; 2013; 67(2):164-71. PubMed ID: 23569077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of octopamine in human plasma by capillary electrophoresis with optical fiber light-emitting diode-induced fluorescence detection.
    Yu Q; Zhao S; Ye F; Li S
    Anal Biochem; 2007 Oct; 369(2):187-91. PubMed ID: 17632069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-emitting diode induced fluorescence (LED-IF) detection design for a pen-shaped cartridge based single capillary electrophoresis system.
    Kerékgyártó M; Kerekes T; Tsai E; Amirkhanian VD; Guttman A
    Electrophoresis; 2012 Sep; 33(17):2752-8. PubMed ID: 22965722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep UV Laser-Induced Fluorescence for Pharmaceutical Cleaning Validation.
    Chullipalliyalil K; Lewis L; McAuliffe MAP
    Anal Chem; 2020 Jan; 92(1):1447-1454. PubMed ID: 31822059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New protocol for αAstree electronic tongue enabling full performance qualification according to ICH Q2.
    Pein M; Eckert C; Preis M; Breitkreutz J
    J Pharm Biomed Anal; 2013 Sep; 83():157-63. PubMed ID: 23743155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quality by design study applied to an industrial pharmaceutical fluid bed granulation.
    Lourenço V; Lochmann D; Reich G; Menezes JC; Herdling T; Schewitz J
    Eur J Pharm Biopharm; 2012 Jun; 81(2):438-47. PubMed ID: 22446063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.