These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 23146435)
1. Bone grafts engineered from human adipose-derived stem cells in dynamic 3D-environments. Declercq HA; De Caluwé T; Krysko O; Bachert C; Cornelissen MJ Biomaterials; 2013 Jan; 34(4):1004-17. PubMed ID: 23146435 [TBL] [Abstract][Full Text] [Related]
2. A modular approach to the engineering of a centimeter-sized bone tissue construct with human amniotic mesenchymal stem cells-laden microcarriers. Chen M; Wang X; Ye Z; Zhang Y; Zhou Y; Tan WS Biomaterials; 2011 Oct; 32(30):7532-42. PubMed ID: 21774980 [TBL] [Abstract][Full Text] [Related]
3. Decellularized adipose tissue microcarriers as a dynamic culture platform for human adipose-derived stem/stromal cell expansion. Yu C; Kornmuller A; Brown C; Hoare T; Flynn LE Biomaterials; 2017 Mar; 120():66-80. PubMed ID: 28038353 [TBL] [Abstract][Full Text] [Related]
4. Osteogenic differentiation of human adipose-derived stem cells in 3D conditions - comparison of spheroids and polystyrene scaffolds. Rumiński S; Kalaszczyńska I; Długosz A; Lewandowska-Szumieł M Eur Cell Mater; 2019 May; 37():382-401. PubMed ID: 31099888 [TBL] [Abstract][Full Text] [Related]
5. Osteogenic differentiation and osteochondral tissue engineering using human adipose-derived stem cells. Mahmoudifar N; Doran PM Biotechnol Prog; 2013; 29(1):176-85. PubMed ID: 23125060 [TBL] [Abstract][Full Text] [Related]
6. Human dental pulp stem cell is a promising autologous seed cell for bone tissue engineering. Li JH; Liu DY; Zhang FM; Wang F; Zhang WK; Zhang ZT Chin Med J (Engl); 2011 Dec; 124(23):4022-8. PubMed ID: 22340336 [TBL] [Abstract][Full Text] [Related]
7. Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds. Bjerre L; Bünger CE; Kassem M; Mygind T Biomaterials; 2008 Jun; 29(17):2616-27. PubMed ID: 18374976 [TBL] [Abstract][Full Text] [Related]
8. Osteogenic differentiation of two distinct subpopulations of human adipose-derived stem cells: an in vitro and in vivo study. Rada T; Santos TC; Marques AP; Correlo VM; Frias AM; Castro AG; Neves NM; Gomes ME; Reis RL J Tissue Eng Regen Med; 2012 Jan; 6(1):1-11. PubMed ID: 21294275 [TBL] [Abstract][Full Text] [Related]
9. Modulating and modeling aggregation of cell-seeded microcarriers in stirred culture system for macrotissue engineering. Mei Y; Luo H; Tang Q; Ye Z; Zhou Y; Tan WS J Biotechnol; 2010 Nov; 150(3):438-46. PubMed ID: 20888876 [TBL] [Abstract][Full Text] [Related]
10. Effect of seeding technique and scaffold material on bone formation in tissue-engineered constructs. Schliephake H; Zghoul N; Jäger V; van Griensven M; Zeichen J; Gelinsky M; Wülfing T J Biomed Mater Res A; 2009 Aug; 90(2):429-37. PubMed ID: 18523951 [TBL] [Abstract][Full Text] [Related]
11. Development of robotic dispensed bioactive scaffolds and human adipose-derived stem cell culturing for bone tissue engineering. Oh CH; Hong SJ; Jeong I; Yu HS; Jegal SH; Kim HW Tissue Eng Part C Methods; 2010 Aug; 16(4):561-71. PubMed ID: 19722827 [TBL] [Abstract][Full Text] [Related]
12. Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Hattori H; Sato M; Masuoka K; Ishihara M; Kikuchi T; Matsui T; Takase B; Ishizuka T; Kikuchi M; Fujikawa K; Ishihara M Cells Tissues Organs; 2004; 178(1):2-12. PubMed ID: 15550755 [TBL] [Abstract][Full Text] [Related]
13. Electroporation-mediated transfer of Runx2 and Osterix genes to enhance osteogenesis of adipose stem cells. Lee JS; Lee JM; Im GI Biomaterials; 2011 Jan; 32(3):760-8. PubMed ID: 20947160 [TBL] [Abstract][Full Text] [Related]
14. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Schantz JT; Teoh SH; Lim TC; Endres M; Lam CX; Hutmacher DW Tissue Eng; 2003; 9 Suppl 1():S113-26. PubMed ID: 14511475 [TBL] [Abstract][Full Text] [Related]
15. In vitro osteogenic potential of human bone marrow stromal cells cultivated in porous scaffolds from mineralized collagen. Bernhardt A; Lode A; Mietrach C; Hempel U; Hanke T; Gelinsky M J Biomed Mater Res A; 2009 Sep; 90(3):852-62. PubMed ID: 18615470 [TBL] [Abstract][Full Text] [Related]
16. Promotion of osteogenesis in tissue-engineered bone by pre-seeding endothelial progenitor cells-derived endothelial cells. Yu H; Vandevord PJ; Gong W; Wu B; Song Z; Matthew HW; Wooley PH; Yang SY J Orthop Res; 2008 Aug; 26(8):1147-52. PubMed ID: 18327810 [TBL] [Abstract][Full Text] [Related]
17. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds. Ye X; Yin X; Yang D; Tan J; Liu G Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840 [TBL] [Abstract][Full Text] [Related]
19. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold. Hao W; Hu YY; Wei YY; Pang L; Lv R; Bai JP; Xiong Z; Jiang M Cells Tissues Organs; 2008; 187(2):89-102. PubMed ID: 17938566 [TBL] [Abstract][Full Text] [Related]
20. Revitalization of cortical bone allograft by application of vascularized scaffolds seeded with osteogenic induced adipose tissue derived stem cells in a rabbit model. Kloeters O; Berger I; Ryssel H; Megerle K; Leimer U; Germann G Arch Orthop Trauma Surg; 2011 Oct; 131(10):1459-66. PubMed ID: 21594572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]