BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 23146762)

  • 1. Gene expression profiling to identify potentially relevant disease outcomes and support human health risk assessment for carbon black nanoparticle exposure.
    Bourdon JA; Williams A; Kuo B; Moffat I; White PA; Halappanavar S; Vogel U; Wallin H; Yauk CL
    Toxicology; 2013 Jan; 303():83-93. PubMed ID: 23146762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-risk Science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes.
    Labib S; Williams A; Yauk CL; Nikota JK; Wallin H; Vogel U; Halappanavar S
    Part Fibre Toxicol; 2016 Mar; 13():15. PubMed ID: 26979667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatic and pulmonary toxicogenomic profiles in mice intratracheally instilled with carbon black nanoparticles reveal pulmonary inflammation, acute phase response, and alterations in lipid homeostasis.
    Bourdon JA; Halappanavar S; Saber AT; Jacobsen NR; Williams A; Wallin H; Vogel U; Yauk CL
    Toxicol Sci; 2012 Jun; 127(2):474-84. PubMed ID: 22461453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-analysis of transcriptomic responses as a means to identify pulmonary disease outcomes for engineered nanomaterials.
    Nikota J; Williams A; Yauk CL; Wallin H; Vogel U; Halappanavar S
    Part Fibre Toxicol; 2016 May; 13(1):25. PubMed ID: 27169501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water.
    Moffat I; Chepelev N; Labib S; Bourdon-Lacombe J; Kuo B; Buick JK; Lemieux F; Williams A; Halappanavar S; Malik A; Luijten M; Aubrecht J; Hyduke DR; Fornace AJ; Swartz CD; Recio L; Yauk CL
    Crit Rev Toxicol; 2015 Jan; 45(1):1-43. PubMed ID: 25605026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon black nanoparticles enhance bleomycin-induced lung inflammatory and fibrotic changes in mice.
    Kamata H; Tasaka S; Inoue K; Miyamoto K; Nakano Y; Shinoda H; Kimizuka Y; Fujiwara H; Ishii M; Hasegawa N; Takamiya R; Fujishima S; Takano H; Ishizaka A
    Exp Biol Med (Maywood); 2011 Mar; 236(3):315-24. PubMed ID: 21427237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of carbon black nanoparticles on elastase-induced emphysematous lung injury in mice.
    Inoue K; Yanagisawa R; Koike E; Nakamura R; Ichinose T; Tasaka S; Kiyono M; Takano H
    Basic Clin Pharmacol Toxicol; 2011 Apr; 108(4):234-40. PubMed ID: 21266011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Genomics Platform and Statistical Filtering on Transcriptional Benchmark Doses (BMD) and Multiple Approaches for Selection of Chemical Point of Departure (PoD).
    Webster AF; Chepelev N; Gagné R; Kuo B; Recio L; Williams A; Yauk CL
    PLoS One; 2015; 10(8):e0136764. PubMed ID: 26313361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs.
    Poulsen SS; Saber AT; Williams A; Andersen O; Købler C; Atluri R; Pozzebon ME; Mucelli SP; Simion M; Rickerby D; Mortensen A; Jackson P; Kyjovska ZO; Mølhave K; Jacobsen NR; Jensen KA; Yauk CL; Wallin H; Halappanavar S; Vogel U
    Toxicol Appl Pharmacol; 2015 Apr; 284(1):16-32. PubMed ID: 25554681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new perspective on calmodulin-regulated calcium and ROS homeostasis upon carbon black nanoparticle exposure.
    Verma N; Pink M; Schmitz-Spanke S
    Arch Toxicol; 2021 Jun; 95(6):2007-2018. PubMed ID: 33772346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment.
    Farmahin R; Williams A; Kuo B; Chepelev NL; Thomas RS; Barton-Maclaren TS; Curran IH; Nong A; Wade MG; Yauk CL
    Arch Toxicol; 2017 May; 91(5):2045-2065. PubMed ID: 27928627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lung alterations following single or multiple low-dose carbon black nanoparticle aspirations in mice.
    Schreiber N; Ströbele M; Kopf J; Hochscheid R; Kotte E; Weber P; Hansen T; Bockhorn H; Müller B
    J Toxicol Environ Health A; 2013; 76(24):1317-32. PubMed ID: 24283474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure of pregnant mice to carbon black by intratracheal instillation: toxicogenomic effects in dams and offspring.
    Jackson P; Hougaard KS; Vogel U; Wu D; Casavant L; Williams A; Wade M; Yauk CL; Wallin H; Halappanavar S
    Mutat Res; 2012 Jun; 745(1-2):73-83. PubMed ID: 22001195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon black nanoparticle intratracheal installation results in large and sustained changes in the expression of miR-135b in mouse lung.
    Bourdon JA; Saber AT; Halappanavar S; Jackson PA; Wu D; Hougaard KS; Jacobsen NR; Williams A; Vogel U; Wallin H; Yauk CL
    Environ Mol Mutagen; 2012 Jul; 53(6):462-8. PubMed ID: 22753103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of toxicogenomics in hepatic systems toxicology for risk assessment: acetaminophen as a case study.
    Kienhuis AS; Bessems JG; Pennings JL; Driessen M; Luijten M; van Delft JH; Peijnenburg AA; van der Ven LT
    Toxicol Appl Pharmacol; 2011 Jan; 250(2):96-107. PubMed ID: 20970440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating toxicogenomics into human health risk assessment: lessons learned from the benzo[a]pyrene case study.
    Chepelev NL; Moffat ID; Labib S; Bourdon-Lacombe J; Kuo B; Buick JK; Lemieux F; Malik AI; Halappanavar S; Williams A; Yauk CL
    Crit Rev Toxicol; 2015 Jan; 45(1):44-52. PubMed ID: 25605027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of Toxicogenomics and Physiologically Based Pharmacokinetic Modeling in Human Health Risk Assessment of Perfluorooctane Sulfonate.
    Chen Q; Chou WC; Lin Z
    Environ Sci Technol; 2022 Mar; 56(6):3623-3633. PubMed ID: 35194992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon black nanoparticles induce pulmonary fibrosis through NLRP3 inflammasome pathway modulated by miR-96 targeted FOXO3a.
    Zhou L; Li P; Zhang M; Han B; Chu C; Su X; Li B; Kang H; Ning J; Zhang B; Ma S; Su D; Pang Y; Niu Y; Zhang R
    Chemosphere; 2020 Feb; 241():125075. PubMed ID: 31683435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maternal inhalation of carbon black nanoparticles induces neurodevelopmental changes in mouse offspring.
    Umezawa M; Onoda A; Korshunova I; Jensen ACØ; Koponen IK; Jensen KA; Khodosevich K; Vogel U; Hougaard KS
    Part Fibre Toxicol; 2018 Sep; 15(1):36. PubMed ID: 30201004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulmonary exposure of mice to ammonium perfluoro(2-methyl-3-oxahexanoate) (GenX) suppresses the innate immune response to carbon black nanoparticles and stimulates lung cell proliferation.
    Lee HY; You DJ; Taylor-Just AJ; Linder KE; Atkins HM; Ralph LM; De la Cruz G; Bonner JC
    Inhal Toxicol; 2022; 34(9-10):244-259. PubMed ID: 35704474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.