These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 23146762)

  • 21. The human hepatocyte TXG-MAPr: gene co-expression network modules to support mechanism-based risk assessment.
    Callegaro G; Kunnen SJ; Trairatphisan P; Grosdidier S; Niemeijer M; den Hollander W; Guney E; Piñero Gonzalez J; Furlong L; Webster YW; Saez-Rodriguez J; Sutherland JJ; Mollon J; Stevens JL; van de Water B
    Arch Toxicol; 2021 Dec; 95(12):3745-3775. PubMed ID: 34626214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative and mechanistic genotoxicity assessment of nanomaterials via a quantitative toxicogenomics approach across multiple species.
    Lan J; Gou N; Gao C; He M; Gu AZ
    Environ Sci Technol; 2014 Nov; 48(21):12937-45. PubMed ID: 25338269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological effects of carbon black nanoparticles are changed by surface coating with polycyclic aromatic hydrocarbons.
    Lindner K; Ströbele M; Schlick S; Webering S; Jenckel A; Kopf J; Danov O; Sewald K; Buj C; Creutzenberg O; Tillmann T; Pohlmann G; Ernst H; Ziemann C; Hüttmann G; Heine H; Bockhorn H; Hansen T; König P; Fehrenbach H
    Part Fibre Toxicol; 2017 Mar; 14(1):8. PubMed ID: 28327162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver.
    Bourdon JA; Saber AT; Jacobsen NR; Jensen KA; Madsen AM; Lamson JS; Wallin H; Møller P; Loft S; Yauk CL; Vogel UB
    Part Fibre Toxicol; 2012 Feb; 9():5. PubMed ID: 22300514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon black nanoparticle intratracheal instillation does not alter cardiac gene expression.
    Bourdon JA; Saber AT; Jacobsen NR; Williams A; Vogel U; Wallin H; Halappanavar S; Yauk CL
    Cardiovasc Toxicol; 2013 Dec; 13(4):406-12. PubMed ID: 24078381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new Transcriptional Effect Level Index (TELI) for toxicogenomics-based toxicity assessment.
    Gou N; Gu AZ
    Environ Sci Technol; 2011 Jun; 45(12):5410-7. PubMed ID: 21612275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toxicogenomic profiling of chemically exposed humans in risk assessment.
    McHale CM; Zhang L; Hubbard AE; Smith MT
    Mutat Res; 2010 Dec; 705(3):172-83. PubMed ID: 20382258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toxicogenomics: transcription profiling for toxicology assessment.
    Zhou T; Chou J; Watkins PB; Kaufmann WK
    EXS; 2009; 99():325-66. PubMed ID: 19157067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modifications of carbon black nanoparticle surfaces modulate type II pneumocyte homoeostasis.
    Schreiber N; Ströbele M; Hochscheid R; Kotte E; Weber P; Bockhorn H; Müller B
    J Toxicol Environ Health A; 2016; 79(4):153-64. PubMed ID: 26914170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of primary and inflammation-driven genotoxicity of carbon black nanoparticles
    Di Ianni E; Møller P; Cholakova T; Wolff H; Jacobsen NR; Vogel U
    Nanotoxicology; 2022 May; 16(4):526-546. PubMed ID: 35993455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated quantitative dose-response modeling and point of departure determination for large toxicogenomic and high-throughput screening data sets.
    Burgoon LD; Zacharewski TR
    Toxicol Sci; 2008 Aug; 104(2):412-8. PubMed ID: 18441342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systems toxicology used in nanotoxicology: mechanistic insights into the hepatotoxicity of nano-copper particles from toxicogenomics.
    Yang B; Wang Q; Lei R; Wu C; Shi C; Wang Q; Yuan Y; Wang Y; Luo Y; Hu Z; Ma H; Liao M
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8527-37. PubMed ID: 21121362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. BMDExpress Data Viewer - a visualization tool to analyze BMDExpress datasets.
    Kuo B; Francina Webster A; Thomas RS; Yauk CL
    J Appl Toxicol; 2016 Aug; 36(8):1048-59. PubMed ID: 26671443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Case study on the utility of hepatic global gene expression profiling in the risk assessment of the carcinogen furan.
    Jackson AF; Williams A; Recio L; Waters MD; Lambert IB; Yauk CL
    Toxicol Appl Pharmacol; 2014 Jan; 274(1):63-77. PubMed ID: 24183702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toxicogenomics analysis of mouse lung responses following exposure to titanium dioxide nanomaterials reveal their disease potential at high doses.
    Rahman L; Wu D; Johnston M; William A; Halappanavar S
    Mutagenesis; 2017 Jan; 32(1):59-76. PubMed ID: 27760801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a toxicogenomics signature for genotoxicity using a dose-optimization and informatics strategy in human cells.
    Li HH; Hyduke DR; Chen R; Heard P; Yauk CL; Aubrecht J; Fornace AJ
    Environ Mol Mutagen; 2015 Jul; 56(6):505-19. PubMed ID: 25733355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxicogenomics Approaches to Address Toxicity and Carcinogenicity in the Liver.
    Pandiri AR; Auerbach SS; Stevens JL; Blomme EAG
    Toxicol Pathol; 2023 Oct; 51(7-8):470-481. PubMed ID: 38288963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toxicogenomic Profiling of 28 Nanomaterials in Mouse Airways.
    Kinaret PAS; Ndika J; Ilves M; Wolff H; Vales G; Norppa H; Savolainen K; Skoog T; Kere J; Moya S; Handy RD; Karisola P; Fadeel B; Greco D; Alenius H
    Adv Sci (Weinh); 2021 May; 8(10):2004588. PubMed ID: 34026454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of evidence from high-throughput screening and transcriptomic data in human health risk assessments.
    Mezencev R; Subramaniam R
    Toxicol Appl Pharmacol; 2019 Oct; 380():114706. PubMed ID: 31400414
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of the comparison approach to open TG-GATEs: A useful toxicogenomics tool for detecting modes of action in chemical risk assessment.
    Heusinkveld HJ; Wackers PFK; Schoonen WG; van der Ven L; Pennings JLA; Luijten M
    Food Chem Toxicol; 2018 Nov; 121():115-123. PubMed ID: 30096367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.