These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 23146965)

  • 1. The negative association of childhood obesity to cognitive control of action monitoring.
    Kamijo K; Pontifex MB; Khan NA; Raine LB; Scudder MR; Drollette ES; Evans EM; Castelli DM; Hillman CH
    Cereb Cortex; 2014 Mar; 24(3):654-62. PubMed ID: 23146965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children.
    Pontifex MB; Raine LB; Johnson CR; Chaddock L; Voss MW; Cohen NJ; Kramer AF; Hillman CH
    J Cogn Neurosci; 2011 Jun; 23(6):1332-45. PubMed ID: 20521857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Association of Childhood Fitness to Proactive and Reactive Action Monitoring.
    Kamijo K; Bae S; Masaki H
    PLoS One; 2016; 11(3):e0150691. PubMed ID: 26939019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The association of childhood obesity to neuroelectric indices of inhibition.
    Kamijo K; Pontifex MB; Khan NA; Raine LB; Scudder MR; Drollette ES; Evans EM; Castelli DM; Hillman CH
    Psychophysiology; 2012 Oct; 49(10):1361-71. PubMed ID: 22913478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of social exclusion on the ERN and the cognitive control of action monitoring.
    Themanson JR; Ball AB; Khatcherian SM; Rosen PJ
    Psychophysiology; 2014 Mar; 51(3):215–25. PubMed ID: 25003166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic fitness and intra-individual variability of neurocognition in preadolescent children.
    Moore RD; Wu CT; Pontifex MB; O'Leary KC; Scudder MR; Raine LB; Johnson CR; Hillman CH
    Brain Cogn; 2013 Jun; 82(1):43-57. PubMed ID: 23511845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological (EEG) evidence for reduced performance monitoring in euthymic bipolar disorder.
    Morsel AM; Morrens M; Temmerman A; Sabbe B; de Bruijn ER
    Bipolar Disord; 2014 Dec; 16(8):820-9. PubMed ID: 25219677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The persistent influence of pediatric concussion on attention and cognitive control during flanker performance.
    Moore RD; Pindus DM; Drolette ES; Scudder MR; Raine LB; Hillman CH
    Biol Psychol; 2015 Jul; 109():93-102. PubMed ID: 25951782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response monitoring and cognitive control in childhood obesity.
    Skoranski AM; Most SB; Lutz-Stehl M; Hoffman JE; Hassink SG; Simons RF
    Biol Psychol; 2013 Feb; 92(2):199-204. PubMed ID: 22981897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prefrontal neuromodulation using rTMS improves error monitoring and correction function in autism.
    Sokhadze EM; Baruth JM; Sears L; Sokhadze GE; El-Baz AS; Casanova MF
    Appl Psychophysiol Biofeedback; 2012 Jun; 37(2):91-102. PubMed ID: 22311204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictors of performance monitoring abilities following traumatic brain injury: the influence of negative affect and cognitive sequelae.
    Larson MJ; Fair JE; Farrer TJ; Perlstein WM
    Int J Psychophysiol; 2011 Oct; 82(1):61-8. PubMed ID: 21315777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Error-monitoring across social and affective processing contexts.
    Suzuki T; Ait Oumeziane B; Novak K; Samuel DB; Foti D
    Int J Psychophysiol; 2020 Apr; 150():37-49. PubMed ID: 32004658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children.
    Hillman CH; Buck SM; Themanson JR; Pontifex MB; Castelli DM
    Dev Psychol; 2009 Jan; 45(1):114-29. PubMed ID: 19209995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fitness and action monitoring: evidence for improved cognitive flexibility in young adults.
    Themanson JR; Pontifex MB; Hillman CH
    Neuroscience; 2008 Nov; 157(2):319-28. PubMed ID: 18845227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Withdrawn/Depressed Behaviors and Error-Related Brain Activity in Youth With Obsessive-Compulsive Disorder.
    Hanna GL; Liu Y; Isaacs YE; Ayoub AM; Torres JJ; O'Hara NB; Gehring WJ
    J Am Acad Child Adolesc Psychiatry; 2016 Oct; 55(10):906-913.e2. PubMed ID: 27663946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anxiety not only increases, but also alters early error-monitoring functions.
    Aarts K; Pourtois G
    Cogn Affect Behav Neurosci; 2010 Dec; 10(4):479-92. PubMed ID: 21098809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The association between mild traumatic brain injury history and cognitive control.
    Pontifex MB; O'Connor PM; Broglio SP; Hillman CH
    Neuropsychologia; 2009 Dec; 47(14):3210-6. PubMed ID: 19664646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperactivity within an extensive cortical distribution associated with excessive sensitivity in error processing in unmedicated depression: a combined event-related potential and sLORETA study.
    Tang Y; Zhang X; Simmonite M; Li H; Zhang T; Guo Q; Li C; Fang Y; Xu Y; Wang J
    Int J Psychophysiol; 2013 Nov; 90(2):282-9. PubMed ID: 24056021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of response-monitoring ERPs in 7- to 25-year-olds.
    Davies PL; Segalowitz SJ; Gavin WJ
    Dev Neuropsychol; 2004; 25(3):355-76. PubMed ID: 15148003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition from reactive control to proactive control across conflict adaptation: An sLORETA study.
    Suzuki K; Shinoda H
    Brain Cogn; 2015 Nov; 100():7-14. PubMed ID: 26432378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.