These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 23146969)
1. Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning. Hoerzer GM; Legenstein R; Maass W Cereb Cortex; 2014 Mar; 24(3):677-90. PubMed ID: 23146969 [TBL] [Abstract][Full Text] [Related]
2. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. Legenstein R; Pecevski D; Maass W PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203 [TBL] [Abstract][Full Text] [Related]
3. Neuron as a reward-modulated combinatorial switch and a model of learning behavior. Rvachev MM Neural Netw; 2013 Oct; 46():62-74. PubMed ID: 23708671 [TBL] [Abstract][Full Text] [Related]
4. Fading memory and kernel properties of generic cortical microcircuit models. Maass W; Natschläger T; Markram H J Physiol Paris; 2004; 98(4-6):315-30. PubMed ID: 16310350 [TBL] [Abstract][Full Text] [Related]
5. Solving the distal reward problem with rare correlations. Soltoggio A; Steil JJ Neural Comput; 2013 Apr; 25(4):940-78. PubMed ID: 23339615 [TBL] [Abstract][Full Text] [Related]
6. Reward-dependent learning in neuronal networks for planning and decision making. Dehaene S; Changeux JP Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649 [TBL] [Abstract][Full Text] [Related]
8. Computational aspects of feedback in neural circuits. Maass W; Joshi P; Sontag ED PLoS Comput Biol; 2007 Jan; 3(1):e165. PubMed ID: 17238280 [TBL] [Abstract][Full Text] [Related]
9. Synaptic dynamics: linear model and adaptation algorithm. Yousefi A; Dibazar AA; Berger TW Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390 [TBL] [Abstract][Full Text] [Related]
10. Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates. Haeusler S; Schuch K; Maass W J Physiol Paris; 2009; 103(1-2):73-87. PubMed ID: 19500669 [TBL] [Abstract][Full Text] [Related]
11. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks. Miconi T Elife; 2017 Feb; 6():. PubMed ID: 28230528 [TBL] [Abstract][Full Text] [Related]
12. A model for the interaction of oscillations and pattern generation with real-time computing in generic neural microcircuit models. Kaske A; Maass W Neural Netw; 2006 Jun; 19(5):600-9. PubMed ID: 16150571 [TBL] [Abstract][Full Text] [Related]
15. Reward-modulated Hebbian learning of decision making. Pfeiffer M; Nessler B; Douglas RJ; Maass W Neural Comput; 2010 Jun; 22(6):1399-444. PubMed ID: 20141476 [TBL] [Abstract][Full Text] [Related]
16. Efficient computation based on stochastic spikes. Ernst U; Rotermund D; Pawelzik K Neural Comput; 2007 May; 19(5):1313-43. PubMed ID: 17381268 [TBL] [Abstract][Full Text] [Related]
17. Learning spike-based population codes by reward and population feedback. Friedrich J; Urbanczik R; Senn W Neural Comput; 2010 Jul; 22(7):1698-717. PubMed ID: 20235820 [TBL] [Abstract][Full Text] [Related]
18. A spiking neural network model of an actor-critic learning agent. Potjans W; Morrison A; Diesmann M Neural Comput; 2009 Feb; 21(2):301-39. PubMed ID: 19196231 [TBL] [Abstract][Full Text] [Related]
20. A Dynamic Connectome Supports the Emergence of Stable Computational Function of Neural Circuits through Reward-Based Learning. Kappel D; Legenstein R; Habenschuss S; Hsieh M; Maass W eNeuro; 2018; 5(2):. PubMed ID: 29696150 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]