These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 23147069)

  • 21. Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis.
    Hyun KA; Jung HI
    Electrophoresis; 2013 Apr; 34(7):1028-41. PubMed ID: 23436295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Size-based enrichment technologies for CTC detection and characterization.
    Williams A; Balic M; Datar R; Cote R
    Recent Results Cancer Res; 2012; 195():87-95. PubMed ID: 22527497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic particle detection and sorting in an electrokinetic microfluidic chip.
    Song Y; Peng R; Wang J; Pan X; Sun Y; Li D
    Electrophoresis; 2013 Mar; 34(5):684-90. PubMed ID: 23172422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microdevice for the isolation and enumeration of cancer cells from blood.
    Tan SJ; Yobas L; Lee GY; Ong CN; Lim CT
    Biomed Microdevices; 2009 Aug; 11(4):883-92. PubMed ID: 19387837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-phase flow in microfluidic-chip design of hydrodynamic filtration for cell particle sorting.
    Yoon K; Jung HW; Chun MS
    Electrophoresis; 2020 Jun; 41(10-11):1002-1010. PubMed ID: 32097495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of aspect ratio for complete separation in an inertial microfluidic channel.
    Zhou J; Giridhar PV; Kasper S; Papautsky I
    Lab Chip; 2013 May; 13(10):1919-29. PubMed ID: 23529341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic enrichment of a target cell type from a heterogenous suspension by adhesion-based negative selection.
    Green JV; Murthy SK
    Lab Chip; 2009 Aug; 9(15):2245-8. PubMed ID: 19606304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic aqueous two phase system for leukocyte concentration from whole blood.
    Soohoo JR; Walker GM
    Biomed Microdevices; 2009 Apr; 11(2):323-9. PubMed ID: 18937070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effect of latrunculin B, jasplakinolide and brefeldin A on the store-dependent Ca2+ entry in macrophages].
    Kurilova LS; Krutetskaia ZI; Lebedev OE
    Tsitologiia; 2006; 48(10):867-74. PubMed ID: 17162846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sorting of human mesenchymal stem cells by applying optimally designed microfluidic chip filtration.
    Jung H; Chun MS; Chang MS
    Analyst; 2015 Feb; 140(4):1265-74. PubMed ID: 25555081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of large-area polymer microfilter membranes and their application for particle and cell enrichment.
    Hernández-Castro JA; Li K; Meunier A; Juncker D; Veres T
    Lab Chip; 2017 May; 17(11):1960-1969. PubMed ID: 28443860
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic sorting of arbitrary cells with dynamic optical tweezers.
    Landenberger B; Höfemann H; Wadle S; Rohrbach A
    Lab Chip; 2012 Sep; 12(17):3177-83. PubMed ID: 22767208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications.
    Crowley TA; Pizziconi V
    Lab Chip; 2005 Sep; 5(9):922-9. PubMed ID: 16100575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping.
    Applegate RW; Squier J; Vestad T; Oakey J; Marr DW; Bado P; Dugan MA; Said AA
    Lab Chip; 2006 Mar; 6(3):422-6. PubMed ID: 16511626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications.
    Lincoln B; Schinkinger S; Travis K; Wottawah F; Ebert S; Sauer F; Guck J
    Biomed Microdevices; 2007 Oct; 9(5):703-10. PubMed ID: 17505883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A microfluidic device for continuous white blood cell separation and lysis from whole blood.
    Kim M; Mo Jung S; Lee KH; Jun Kang Y; Yang S
    Artif Organs; 2010 Nov; 34(11):996-1002. PubMed ID: 21092042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip.
    Huang T; Jia CP; Jun-Yang ; Sun WJ; Wang WT; Zhang HL; Cong H; Jing FX; Mao HJ; Jin QH; Zhang Z; Chen YJ; Li G; Mao GX; Zhao JL
    Biosens Bioelectron; 2014 Jan; 51():213-8. PubMed ID: 23962709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flow stabilizer on a syringe tip for hand-powered microfluidic sample injection.
    Xiang N; Han Y; Jia Y; Shi Z; Yi H; Ni Z
    Lab Chip; 2019 Jan; 19(2):214-222. PubMed ID: 30534798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter.
    Kim MS; Sim TS; Kim YJ; Kim SS; Jeong H; Park JM; Moon HS; Kim SI; Gurel O; Lee SS; Lee JG; Park JC
    Lab Chip; 2012 Aug; 12(16):2874-80. PubMed ID: 22684249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deformability-based cell classification and enrichment using inertial microfluidics.
    Hur SC; Henderson-MacLennan NK; McCabe ER; Di Carlo D
    Lab Chip; 2011 Mar; 11(5):912-20. PubMed ID: 21271000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.