BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 23147219)

  • 1. A multi-omic systems approach to elucidating Yersinia virulence mechanisms.
    Ansong C; Schrimpe-Rutledge AC; Mitchell HD; Chauhan S; Jones MB; Kim YM; McAteer K; Deatherage Kaiser BL; Dubois JL; Brewer HM; Frank BC; McDermott JE; Metz TO; Peterson SN; Smith RD; Motin VL; Adkins JN
    Mol Biosyst; 2013 Jan; 9(1):44-54. PubMed ID: 23147219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae.
    Heroven AK; Dersch P
    Front Cell Infect Microbiol; 2014; 4():146. PubMed ID: 25368845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico comparison of Yersinia pestis and Yersinia pseudotuberculosis transcriptomes reveals a higher expression level of crucial virulence determinants in the plague bacillus.
    Chauvaux S; Dillies MA; Marceau M; Rosso ML; Rousseau S; Moszer I; Simonet M; Carniel E
    Int J Med Microbiol; 2011 Feb; 301(2):105-16. PubMed ID: 20951640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The yersiniae--a model genus to study the rapid evolution of bacterial pathogens.
    Wren BW
    Nat Rev Microbiol; 2003 Oct; 1(1):55-64. PubMed ID: 15040180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early evolutionary loss of the lipid A modifying enzyme PagP resulting in innate immune evasion in
    Chandler CE; Harberts EM; Pelletier MR; Thaipisuttikul I; Jones JW; Hajjar AM; Sahl JW; Goodlett DR; Pride AC; Rasko DA; Trent MS; Bishop RE; Ernst RK
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22984-22991. PubMed ID: 32868431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneity of the Yersinia YopM protein.
    Boland A; Havaux S; Cornelis GR
    Microb Pathog; 1998 Dec; 25(6):343-8. PubMed ID: 9895273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adhesins of human pathogens from the genus Yersinia.
    Leo JC; Skurnik M
    Adv Exp Med Biol; 2011; 715():1-15. PubMed ID: 21557054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yersinia pestis and plague.
    Titball RW; Hill J; Lawton DG; Brown KA
    Biochem Soc Trans; 2003 Feb; 31(Pt 1):104-7. PubMed ID: 12546664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative omics-driven genome annotation refinement: application across Yersiniae.
    Schrimpe-Rutledge AC; Jones MB; Chauhan S; Purvine SO; Sanford JA; Monroe ME; Brewer HM; Payne SH; Ansong C; Frank BC; Smith RD; Peterson SN; Motin VL; Adkins JN
    PLoS One; 2012; 7(3):e33903. PubMed ID: 22479471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of small RNAs in Yersinia pestis.
    Beauregard A; Smith EA; Petrone BL; Singh N; Karch C; McDonough KA; Wade JT
    RNA Biol; 2013 Mar; 10(3):397-405. PubMed ID: 23324607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rationale for repression and/or loss of motility by pathogenic Yersinia in the mammalian host.
    Minnich SA; Rohde HN
    Adv Exp Med Biol; 2007; 603():298-310. PubMed ID: 17966426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular proteomic analysis of host-pathogen interactions using human monocytes exposed to Yersinia pestis and Yersinia pseudotuberculosis.
    Zhang CG; Gonzales AD; Choi MW; Chromy BA; Fitch JP; McCutchen-Maloney SL
    Proteomics; 2005 May; 5(7):1877-88. PubMed ID: 15825148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [ON THE ORIGIN OF HYPERVIRULENCE OF THE CAUSATIVE AGENT OF PLAGUE].
    Anisimov NV; Kislichkina AA; Platonov ME; Evseeva VV; Kadnikova LA; Lipatnikova NA; Bogun AG; Dentovskaya SV; Anisimov AP
    Med Parazitol (Mosk); 2016; (1):26-32. PubMed ID: 27029142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the V antigen lcrGVH-yopBD operon of Yersinia pseudotuberculosis: evidence for a regulatory role of LcrH and LcrV.
    Bergman T; Håkansson S; Forsberg A; Norlander L; Macellaro A; Bäckman A; Bölin I; Wolf-Watz H
    J Bacteriol; 1991 Mar; 173(5):1607-16. PubMed ID: 1705541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Single Amino Acid Change in the Response Regulator PhoP, Acquired during Yersinia pestis Evolution, Affects PhoP Target Gene Transcription and Polymyxin B Susceptibility.
    Fukuto HS; Vadyvaloo V; McPhee JB; Poinar HN; Holmes EC; Bliska JB
    J Bacteriol; 2018 May; 200(9):. PubMed ID: 29440252
    [No Abstract]   [Full Text] [Related]  

  • 16. Innate immune response during Yersinia infection: critical modulation of cell death mechanisms through phagocyte activation.
    Bergsbaken T; Cookson BT
    J Leukoc Biol; 2009 Nov; 86(5):1153-8. PubMed ID: 19734471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bubonic plague: a molecular genetic case history of the emergence of an infectious disease.
    Hinnebusch BJ
    J Mol Med (Berl); 1997 Sep; 75(9):645-52. PubMed ID: 9351703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The molecular basis of the virulence of Yersinia].
    Cornelis GR
    Bull Mem Acad R Med Belg; 1990; 145(6-7):280-7; discussion 287-8. PubMed ID: 2249086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA Regulators: Formidable Modulators of Yersinia Virulence.
    Nuss AM; Heroven AK; Dersch P
    Trends Microbiol; 2017 Jan; 25(1):19-34. PubMed ID: 27651123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studying Salmonellae and Yersiniae host-pathogen interactions using integrated 'omics and modeling.
    Ansong C; Deatherage BL; Hyduke D; Schmidt B; McDermott JE; Jones MB; Chauhan S; Charusanti P; Kim YM; Nakayasu ES; Li J; Kidwai A; Niemann G; Brown RN; Metz TO; McAteer K; Heffron F; Peterson SN; Motin V; Palsson BO; Smith RD; Adkins JN
    Curr Top Microbiol Immunol; 2013; 363():21-41. PubMed ID: 22886542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.