These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 23147464)

  • 1. Electrospun eggroll-like CaSnO3 nanotubes with high lithium storage performance.
    Li L; Peng S; Cheah YL; Wang J; Teh P; Ko Y; Wong C; Srinivasan M
    Nanoscale; 2013 Jan; 5(1):134-8. PubMed ID: 23147464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile approach to prepare porous CaSnO₃ nanotubes via a single spinneret electrospinning technique as anodes for lithium ion batteries.
    Li L; Peng S; Wang J; Cheah YL; Teh P; Ko Y; Wong C; Srinivasan M
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6005-12. PubMed ID: 23075378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability.
    Jeun JH; Park KY; Kim DH; Kim WS; Kim HC; Lee BS; Kim H; Yu WR; Kang K; Hong SH
    Nanoscale; 2013 Sep; 5(18):8480-3. PubMed ID: 23897097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes.
    Fan Y; Zhang Q; Lu C; Xiao Q; Wang X; Tay BK
    Nanoscale; 2013 Feb; 5(4):1503-6. PubMed ID: 23334522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SnO(2) nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage.
    Kim JG; Nam SH; Lee SH; Choi SM; Kim WB
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):828-35. PubMed ID: 21344871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic spray deposition of porous SnO₂/graphene anode films and their enhanced lithium-storage properties.
    Jiang Y; Yuan T; Sun W; Yan M
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6216-20. PubMed ID: 23106602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly conductive coaxial SnO(2)-In(2)O(3) heterostructured nanowires for Li ion battery electrodes.
    Kim DW; Hwang IS; Kwon SJ; Kang HY; Park KS; Choi YJ; Choi KJ; Park JG
    Nano Lett; 2007 Oct; 7(10):3041-5. PubMed ID: 17760477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries.
    Han H; Song T; Lee EK; Devadoss A; Jeon Y; Ha J; Chung YC; Choi YM; Jung YG; Paik U
    ACS Nano; 2012 Sep; 6(9):8308-15. PubMed ID: 22935008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries.
    Wu P; Du N; Zhang H; Yu J; Qi Y; Yang D
    Nanoscale; 2011 Feb; 3(2):746-50. PubMed ID: 21113552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer-stacked tin disulfide nanorods in silica nanoreactors with improved lithium storage capabilities.
    Wu P; Du N; Zhang H; Liu J; Chang L; Wang L; Yang D; Jiang JZ
    Nanoscale; 2012 Jul; 4(13):4002-6. PubMed ID: 22677937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS₂ nanoplates for high-performance lithium-ion batteries.
    Du Y; Yin Z; Rui X; Zeng Z; Wu XJ; Liu J; Zhu Y; Zhu J; Huang X; Yan Q; Zhang H
    Nanoscale; 2013 Feb; 5(4):1456-9. PubMed ID: 23306599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries.
    Chen P; Wu F; Wang Y
    ChemSusChem; 2014 May; 7(5):1407-14. PubMed ID: 24648261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ZnSn(OH)6 nanocube-graphene composite as an anode material for Li-ion batteries.
    Chen C; Zheng X; Yang J; Wei M
    Phys Chem Chem Phys; 2014 Oct; 16(37):20073-8. PubMed ID: 25130363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Si/Ge double-layered nanotube array as a lithium ion battery anode.
    Song T; Cheng H; Choi H; Lee JH; Han H; Lee DH; Yoo DS; Kwon MS; Choi JM; Doo SG; Chang H; Xiao J; Huang Y; Park WI; Chung YC; Kim H; Rogers JA; Paik U
    ACS Nano; 2012 Jan; 6(1):303-9. PubMed ID: 22142021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanosize SnO₂ confined in the porous shells of carbon cages for kinetically efficient and long-term lithium storage.
    Zhou G; Wang DW; Li L; Li N; Li F; Cheng HM
    Nanoscale; 2013 Feb; 5(4):1576-82. PubMed ID: 23329149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity.
    Kong J; Liu Z; Yang Z; Tan HR; Xiong S; Wong SY; Li X; Lu X
    Nanoscale; 2012 Jan; 4(2):525-30. PubMed ID: 22127410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries.
    Lin J; Peng Z; Xiang C; Ruan G; Yan Z; Natelson D; Tour JM
    ACS Nano; 2013 Jul; 7(7):6001-6. PubMed ID: 23758123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sn(78)Ge(22)@carbon core-shell nanowires as fast and high-capacity lithium storage media.
    Lee H; Cho J
    Nano Lett; 2007 Sep; 7(9):2638-41. PubMed ID: 17661523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible free-standing graphene/SnO₂ nanocomposites paper for Li-ion battery.
    Liang J; Zhao Y; Guo L; Li L
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5742-8. PubMed ID: 23088588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology-controlled synthesis of SnO(2) nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries.
    Ye J; Zhang H; Yang R; Li X; Qi L
    Small; 2010 Jan; 6(2):296-306. PubMed ID: 19943259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.